Menu
    //
    Gold(162)/ Hybrid(140)/ Green(56) OA
    /
    Major(336)/ minor(40) contribution
    Joint publication by X groups (80)

    2024

  1. 2

    3DReact: Geometric deep learning for chemical reactions

    P. van Gerwen, K.R. Briling, C. Bunne, V.R. Somnath, R. Laplaza, A. Krause, C. CorminboeufJ. Chem. Inf. Model. 2024, 64, 5771. DOI: 10.1021/acs.jcim.4c00104. Dataset: 10.5281/zenodo.12744940 (Zenodo).
  2. 109Ag NMR chemical shift as a descriptor for Brønsted acidity from molecules to materials

    C. Hansen, S.R. Docherty, W. Cao, A. Yakimov, C. CopéretChem. Sci. 2024, 15, 3028. DOI: 10.1039/d3sc04067d.
  3. A Ni(0) methyl complex based on a bimetallic Ni–Ga framework

    M.M. Andrey, A. Bütikofer, R. Wolf, S.A. Künzi, P. ChenOrganometallics 2024, 43, 1276. DOI: 10.1021/acs.organomet.4c00111.
  4. A generalized model for estimating adsorption energies of single atoms on doped carbon materials

    M.G. Minotaki, J. Geiger, A. Ruiz-Ferrando, A. Sabadell-Rendón, N. LópezJ. Mater. Chem. A 2024, 12, 11049. DOI: 10.1039/d3ta05898k. Dataset: 10.19061/iochem-bd-1-329 (ioChem-BD).
  5. A genetic optimization strategy with generality in asymmetric organocatalysis as a primary target

    S. Gallarati, P. van Gerwen, R. Laplaza, L. Brey, A. Makaveev, C. CorminboeufChem. Sci. 2024, 15, 3640. DOI: 10.1039/d3sc06208b. Dataset: 10.24435/materialscloud:p4-gz (Materials Cloud).
  6. A human-machine interface for automatic exploration of chemical reaction networks

    M. Steiner, M. ReiherNat. Commun. 2024, 15, 3680. DOI: 10.1038/s41467-024-47997-9. Dataset: 10.5281/zenodo.10611686 (Zenodo).
  7. Accelerated chemical science with AI

    S. Back, A. Aspuru-Guzik, M. Ceriotti, G. Gryn'ova, B. Grzybowski, G.H. Gu, J. Hein, K. Hippalgaonkar, R. Hormázabal, Y. Jung, S. Kim, W.Y. Kim, S.M. Moosavi, J. Noh, C. Park, J. Schrier, P. Schwaller, K. Tsuda, T. Vegge, O.A. von Lilienfeld, A. WalshDigital Discovery 2024, 3, 23. DOI: 10.1039/d3dd00213f.
  8. Active learning streamlines development of high performance catalysts for higher alcohol synthesis

    M. Suvarna, T. Zou, S.H. Chong, Y. Ge, A.J. Martín, J. Pérez-RamírezNat. Commun. 2024, 15, 5844. DOI: 10.1038/s41467-024-50215-1. Dataset: 10.5281/zenodo.11639494 (Zenodo).
  9. An artificial nickel chlorinase based on the biotin–streptavidin technology

    K. Yu, K. Zhang, R.P. Jakob, T. Maier, T.R. WardChem. Commun. 2024, 60, 1944. DOI: 10.1039/d3cc05847f. Dataset: 10.5281/zenodo.12515594 (Zenodo).
  10. An evolved artificial radical cyclase enables the construction of bicyclic terpenoid scaffolds via an H-atom transfer pathway

    D. Chen, X. Zhang, A.A. Vorobieva, R. Tachibana, A. Stein, R.P. Jakob, Z. Zou, D.A. Graf, A. Li, T. Maier, B.E. Correia, T.R. WardNat. Chem. 2024, in press. DOI: 10.1038/s41557-024-01562-5. Dataset: 10.5281/zenodo.12914139. (Zenodo).
  11. Artificial metalloenzyme‐catalyzed enantioselective carboamination of alkenes

    K. Yu, R. Tachibana, C. Rumo, N.V. Igareta, K. Zhang, T.R. WardChemCatChem 2024, 16, e202400365. DOI: 10.1002/cctc.202400365. Dataset: 10.5281/zenodo.12683879 (Zenodo).
  12. Arylative ring expansion of 3‐vinylazetidin‐3‐ols and 3‐vinyloxetan‐3‐ols to dihydrofurans by dual palladium and acid catalysis

    T. Fujii, Q. Wang, J. ZhuAngew. Chem. 2024, 63, e202403484. DOI: 10.1002/anie.202403484.
  13. Augmented memory: Sample-efficient generative molecular design with reinforcement learning

    J. Guo, P. SchwallerJACS Au 2024, 4, 2160. DOI: 10.1021/jacsau.4c00066. Dataset: schwallergroup/augmented_memory (GitHub).
  14. Augmenting large language models with chemistry tools

    A.M. Bran, S. Cox, O.T. Schilter, C. Baldassari, A.D. White, P. SchwallerNat. Mach. Intell. 2024, 6, 525. DOI: 10.1038/s42256-024-00832-8. Dataset: 10.5281/zenodo.10884639 (Zenodo).
  15. Automated prediction of ground state spin for transition metal complexes

    C. Yuri, R. Laplaza, S. Vela, C. CorminboeufDigital Discovery 2024, 3, 1638. DOI: 10.1039/d4dd00093e. Dataset: 10.24435/materialscloud:jx-a5 (Materials Cloud).
  16. 2

    Balancing computational chemistry's potential with its environmental impact

    O.T. Schilter, P. Schwaller, T. LainoGreen Chem. 2024, 26, 8669. DOI: 10.1039/d4gc01745e.
  17. Bayesian optimisation for additive screening and yield improvements – beyond one-hot encoding

    B. Ranković, R. Griffiths, H.B. Moss, P. SchwallerDigital Discovery 2024, 3, 654. DOI: 10.1039/d3dd00096f.
  18. Beam enumeration: Probabilistic explainability for sample efficient self-conditioned molecular design

    J. Guo, P. SchwallerICLR 2024. DOI: 10.48550/arxiv.2309.13957. Dataset: schwallergroup/augmented_memory (GitHub).
  19. Benchmarking machine-readable vectors of chemical reactions on computed activation barriers

    P. van Gerwen, K.R. Briling, Y. Calvino Alonso, M. Franke, C. CorminboeufDigital Discovery 2024, 3, 932. DOI: 10.1039/d3dd00175j. Dataset: 10.5281/zenodo.8309464 (Zenodo).
  20. 2

    Benzylic C(sp3)−H azidation: Copper vs iron catalysis

    A. Rentería‐Gómez, R.O. Torres‐Ochoa, P. Palamini, R. Simonet‐Davin, Q. Wang, J. Waser, J. ZhuHelv. Chim. Acta 2024, 107, e202400004. DOI: 10.1002/hlca.202400004. Dataset: 10.5281/zenodo.10620281 (Zenodo).
  21. 2

    CMD + V for chemistry: Image to chemical structure conversion directly done in the clipboard

    O.T. Schilter, T. Laino, P. SchwallerApplied AI Letters 2024, 5, e91. DOI: 10.1002/ail2.91. Dataset: o-schilter/clipboard-to-smiles-converter (GitHub).
  22. 2

    CO cofeeding affects product distribution in CH3Cl coupling over ZSM‐5 zeolite: Pressure twists the plot

    Z. Zhang, M. Vanni, X. Wu, P. Hemberger, A. Bodi, S. Mitchell, J. Pérez-RamírezAngew. Chem. 2024, 136, e202401060. DOI: 10.1002/ange.202401060. Dataset: 10.5281/zenodo.7916390 (Zenodo).
  23. Carbon–carbon bond cleavage for a lignin refinery

    Z. Luo, C. Liu, A. Radu, D.F. de Waard, Y. Wang, J. Behaghel de Bueren, P.D. Kouris, M.D. Boot, J. Xiao, H. Zhang, R. Xiao, J.S. Luterbacher, E.J.M. HensenNat. Chem. Eng. 2024, 1, 61. DOI: 10.1038/s44286-023-00006-0.
  24. Circularity assessment in a chemical company. Evaluation of mass-based vs. impact-based circularity

    M. Wiprächtiger, S. HellwegResour., Conserv. Recycl. 2024, 204, 107458. DOI: 10.1016/j.resconrec.2024.107458.
  25. Colloidal atomic layer deposition on nanocrystals using ligand-modified precursors

    P.B. Green, O. Segura Lecina, P.P. Albertini, M.A. Newton, K. Kumar, C. Boulanger, J. Leemans, P.B. Thompson, A. Loiudice, R. BuonsantiJ. Am. Chem. Soc. 2024, 146, 10708. DOI: 10.1021/jacs.4c00538.
  26. Combining Bayesian optimization and automation to simultaneously optimize reaction conditions and routes

    O.T. Schilter, D.P. Gutierrez, L.M. Folkmann, A. Castrogiovanni, A. García-Durán, F. Zipoli, L.M. Roch, T. LainoChem. Sci. 2024, 15, 7732. DOI: 10.1039/d3sc05607d. Dataset: 10.5281/zenodo.10022311 (Zenodo).
  27. Computational prediction of complex cationic rearrangement outcomes

    T. Klucznik, L. Syntrivanis, S. Baś, B. Mikulak-Klucznik, M. Moskal, S. Szymkuć, J. Mlynarski, L. Gadina, W. Beker, M.D. Burke, K. Tiefenbacher, B. GrzybowskiNature 2024, 625, 508. DOI: 10.1038/s41586-023-06854-3. Dataset: nanotekton/ellipsoid_cavity (GitHub).
  28. Contrasting views of the electric double layer in electrochemical CO2 reduction: Continuum models vs molecular dynamics

    E.F. Johnson, S. HaussenerJ. Phys. Chem. C 2024, 128, 10450. DOI: 10.1021/acs.jpcc.4c03469.
  29. Current developments in operando electron paramagnetic resonance spectroscopy

    J. Fischer, M. Agrachev, J. Forrer, R. Tschaggelar, O. Oberhänsli, G. JeschkeChimia 2024, 78, 326. DOI: 10.2533/chimia.2024.326.
  30. Cyclopentadienone iron complex-catalyzed hydrogenation of ketones: The influence of the charge-tag on catalytic performance

    A. Bütikofer, V. Kesselring, P. ChenOrganometallics 2024, 43, 934. DOI: 10.1021/acs.organomet.3c00489.
  31. Defective zirconia promotes monometallic iron catalysts for higher alcohol synthesis

    Y. Ge, T. Zou, A.J. Martín, T. Black, R. Pöttgen, J. Pérez-RamírezChem Catal. 2024, 4, 101010. DOI: 10.1016/j.checat.2024.101010. Dataset: 10.5281/zenodo.10619310 (Zenodo).
  32. 2

    Design of technical ZnO/ZrO2 catalysts for CO2 hydrogenation to green methanol

    T. Zou, T. Pinheiro Araújo, M. Agrachev, X. Jin, F. Krumeich, G. Jeschke, S. Mitchell, J. Pérez-RamírezJ. Catal. 2024, 430, 115344. DOI: 10.1016/j.jcat.2024.115344.
  33. 2

    Droplet‐based microfluidics reveals insights into cross‐coupling mechanisms over single‐atom heterogeneous catalysts

    T. Moragues, G. Giannakakis, A. Ruiz-Ferrando, C.N. Borca, T. Huthwelker, A. Bugaev, A.J. de Mello, J. Pérez-Ramírez, S. MitchellAngew. Chem. 2024, 63, e202401056. DOI: 10.1002/anie.202401056. Datasets: 10.19061/iochem-bd-1-291 (ioChem-BD), 10.5281/zenodo.8399256 (Zenodo).
  34. Editing tetrasubstituted carbon: Dual C–O bond functionalization of tertiary alcohols enabled by palladium-based dyotropic rearrangement

    T. Delcaillau, B. Yang, Q. Wang, J. ZhuJ. Am. Chem. Soc. 2024, 146, 11061. DOI: 10.1021/jacs.4c02924.
  35. Effective engineering of a ketoreductase for the biocatalytic synthesis of an ipatasertib precursor

    S. Honda Malca, N. Duss, J. Meierhofer, D. Patsch, M. Niklaus, S. Reiter, S.P. Hanlon, D. Wetzl, B. Kuhn, H. Iding, R.M. BullerCommun. Chem. 2024, 7, 46. DOI: 10.1038/s42004-024-01130-5. Dataset: ccbiozhaw/ssal-kred_evolution (GitHub).
  36. Electron-transferring metalloenzymes and their potential biotechnological applications

    R.D. MiltonChimia 2024, 78, 13. DOI: 10.2533/chimia.2024.13.
  37. Electrostatic [FeFe]-hydrogenase–carbon nitride assemblies for efficient solar hydrogen production

    Y. Liu, C. Pulignani, S. Webb, S.J. Cobb, S. Rodríguez-Jiménez, D. Kim, R.D. Milton, E. ReisnerChem. Sci. 2024, 15, 6088. DOI: 10.1039/d4sc00640b. Dataset: 10.17863/cam.106936 (Zenodo).
  38. Embracing data science in catalysis research

    M. Suvarna, J. Pérez-RamírezNat. Catal. 2024, 7, 624. DOI: 10.1038/s41929-024-01150-3. Dataset: 10.5281/zenodo.10640876 (Zenodo).
  39. Engineering frustrated Lewis pair active sites in porous organic scaffolds for catalytic CO2 hydrogenation

    S. Das, R. Laplaza, J.T. Blaskovits, C. CorminboeufJ. Am. Chem. Soc. 2024, 146, 15806. DOI: 10.1021/jacs.4c01890. Dataset: 10.24435/materialscloud:90-b6 (Materials Cloud).
  40. 2

    Enhanced deep-learning model for carbon footprints of chemicals

    D. Zhang, Z. Wang, C. Oberschelp, E. Bradford, S. HellwegACS Sustainable Chem. Eng. 2024, 12, 2700. DOI: 10.1021/acssuschemeng.3c07038. Dataset: 10.5281/zenodo.10410702 (Zenodo).
  41. 2

    Enhanced sequence-activity mapping and evolution of artificial metalloenzymes by active learning

    T. Vornholt, M. Mutný, G.W. Schmidt, C. Schellhaas, R. Tachibana, S. Panke, T.R. Ward, A. Krause, M. JeschekACS Cent. Sci. 2024, 10, 1357. DOI: 10.1021/acscentsci.4c00258. Datasets: 10.5281/zenodo.12578395 (Zenodo), 10.1021/acscentsci.4c00258 (GitHub).
  42. Excelzyme: A Swiss university-industry collaboration for accelerated biocatalyst development

    S. Honda Malca, P. Stockinger, N. Duss, D. Milbredt, H. Iding, R.M. BullerChimia 2024, 78, 108. DOI: 10.2533/chimia.2024.108.
  43. From organic fragments to photoswitchable catalysts: The OFF–ON structural repository for transferable kernel-based potentials

    F. Celerse, M.D. Wodrich, S. Vela, S. Gallarati, R. Fabregat I De Aguilar-Amat, V. Jurásková, C. CorminboeufJ. Chem. Inf. Model. 2024, 64, 1201. DOI: 10.1021/acs.jcim.3c01953. Dataset: 10.24435/materialscloud:pz-2y (Materials Cloud).
  44. Fuelling the digital chemistry revolution with language models

    A. Cardinale, A. Castrogiovanni, T. Gaudin, J. Geluykens, T. Laino, M. Manica, D. Probst, P. Schwaller, A. Sobczyk, A. Toniato, A.C. Vaucher, H. Wolf, F. ZipoliChimia 2024, 77, 484. DOI: 10.2533/chimia.2023.484.
  45. GAUCHE: A library for Gaussian processes in chemistry

    R. Griffiths, L. Klarner, H. Moss, A. Ravuri, Y. Du, S.C. Stanton, G. Tom, B. Ranković, A.R. Jamasb, A. Deshwal, J. Schwartz, A. Tripp, G. Kell, S. Frieder, A. Bourached, A. Chan, J. Moss, C. Guo, J.P. Dürholt, J.W. Park, F. Strieth‐Kalthoff, A.A. Lee, B. Cheng, A. Aspuru-Guzik, P. Schwaller, J. TangNeurIPS 2024. DOI: 10.48550/arxiv.2212.04450. Dataset: leojklarner/gauche (GitHub).
  46. Graphene electrode for studying CO2 electroreduction nanocatalysts under realistic conditions in microcells

    S. Toleukhanova, T. Shen, C. Chang, S. Swathilakshmi, T. Bottinelli Montandon, V. TileliAdv. Mater. 2024, 36, 2311133. DOI: 10.1002/adma.202311133.
  47. Growing strings in a chemical reaction space for searching retrosynthesis pathways

    F. Zipoli, C. Baldassari, M. Manica, J. Born, T. Lainonpj Comput. Mater. 2024, 10, 101. DOI: 10.1038/s41524-024-01290-x. Dataset: rxn4chemistry/rxn4chemistry (GitHub).
  48. Heuristics and uncertainty quantification in rational and inverse compound and catalyst design

    T. Weymuth, M. ReiherElsevier eBooks 2024, 4, 485. DOI: 10.1016/b978-0-12-821978-2.00007-6.
  49. Hybrid oxide coatings generate stable Cu catalysts for CO2 electroreduction

    P.P. Albertini, M.A. Newton, M. Wang, O. Segura Lecina, P.B. Green, D.C. Stoian, E. Oveisi, A. Loiudice, R. BuonsantiNat. Mater. 2024, 23, 680. DOI: 10.1038/s41563-024-01819-x. Dataset: 10.5281/zenodo.10524037 (Zenodo).
  50. 2

    Integrating climate policies in the sustainability analysis of green chemicals

    A. Nabera, A.J. Martín, I. Istrate, J. Pérez-Ramírez, G. Guillén‐GosálbezGreen Chem. 2024, 26, 6461. DOI: 10.1039/d4gc00392f.
  51. Is lithium from geothermal brines the sustainable solution for Li-ion batteries?

    V. Schenker, P. Bayer, C. Oberschelp, S. PfisterRenewable Sustainable Energy Rev. 2024, 199, 114456. DOI: 10.1016/j.rser.2024.114456. Dataset: 10.5281/zenodo.13253266 (Zenodo).
  52. 2

    Legacy and emerging plasticizers and stabilizers in PVC floorings and implications for recycling

    H. Wiesinger, C. Bleuler, V. Christen, P. Favreau, S. Hellweg, M. Langer, R. Pasquettaz, A. Schönborn, Z. WangEnviron. Sci. Technol. 2024, 58, 1894. DOI: 10.1021/acs.est.3c04851. Dataset: 10.17632/s4g2y7c7c7.2 (Mendeley Data).
  53. Leveraging large language models for predictive chemistry

    K.M. Jablonka, P. Schwaller, A. Ortega-Guerrero, B. SmitNat. Mach. Intell. 2024, 6, 161. DOI: 10.1038/s42256-023-00788-1. Dataset: 10.5281/zenodo.7806672 (Zenodo).
  54. 4

    Low-nuclearity CuZn ensembles on ZnZrOx catalyze methanol synthesis from CO2

    T. Pinheiro Araújo, G. Giannakakis, J. Morales‐Vidal, M. Agrachev, Z. Ruiz-Bernal, P. Preikschas, T. Zou, F. Krumeich, P.O. Willi, W.J. Stark, R.N. Grass, G. Jeschke, S. Mitchell, N. López, J. Pérez-RamírezNat. Commun. 2024, 15, 3101. DOI: 10.1038/s41467-024-47447-6. Datasets: 10.19061/iochem-bd-1-288 (ioChem-BD), philpreikschas/operando-ir (GitHub), 10.5281/zenodo.10818471 (Zenodo), 10.5281/zenodo.8309938 (Zenodo).
  55. Machine learning-aided generative molecular design

    Y. Du, A.R. Jamasb, J. Guo, T. Fu, C. Harris, Y. Wang, C. Duan, P. Liò, P. Schwaller, T.L. BlundellNat. Mach. Intell. 2024, 6, 589. DOI: 10.1038/s42256-024-00843-5.
  56. Magnetic resonance velocimetry of particle hydrodynamics in a three-dimensional draft tube spout-fluid bed

    J.P. Metzger, B. Chen, A. Penn, C. Guenthner, K.P. Pruessmann, C.R. MüllerChem. Eng. J. 2024, 485, 149678. DOI: 10.1016/j.cej.2024.149678. Dataset: 10.5281/zenodo.10677372 (Zenodo).
  57. Microkinetic molecular volcano plots for enhanced catalyst selectivity and activity predictions

    T. Worakul, R. Laplaza, S. Das, M.D. Wodrich, C. CorminboeufACS Catal. 2024, 14, 9829. DOI: 10.1021/acscatal.4c01175. Dataset: 10.5281/zenodo.12731465 (Zenodo).
  58. Mn-promoted MoS2 catalysts for CO2 hydrogenation: enhanced methanol selectivity due to MoS2/MnOx interfaces

    G.A.S. Alves, G. Pacholik, S. Pollitt, T. Wagner, R. Rameshan, C. Rameshan, K. FöttingerCatal. Sci. Technol. 2024, 14, 1138. DOI: 10.1039/d3cy01711g.
  59. Molecular hypergraph neural networks

    J. Chen, P. SchwallerJ. Chem. Phys. 2024, 160, 144307. DOI: 10.1063/5.0193557. Dataset: schwallergroup/mhnn (GitHub).
  60. Nanoscale chemical reaction exploration with a quantum magnifying glass

    K. Csizi, M. Steiner, M. ReiherNat. Commun. 2024, 15, 5320. DOI: 10.1038/s41467-024-49594-2. Dataset: 10.5281/zenodo.10697553 (Zenodo).
  61. Operando observation of (bi)carbonate precipitation during electrochemical CO2 reduction in strongly acidic electrolytes

    F. Bernasconi, N. Plainpan, M. Mirolo, Q. Wang, P. Zeng, C. Battaglia, A. SenocrateACS Catal. 2024, 14, 8232. DOI: 10.1021/acscatal.4c01884. Dataset: 10.5281/zenodo.11112946 (Zenodo).
  62. Overcoming the pitfalls of computing reaction selectivity from ensembles of transition states

    R. Laplaza, M.D. Wodrich, C. CorminboeufJ. Phys. Chem. Lett. 2024, 15, 7363. DOI: 10.1021/acs.jpclett.4c01657. Dataset: 10.5281/zenodo.12569950 (Zenodo).
  63. Parallel experiments in electrochemical CO2 reduction enabled by standardized analytics

    A. Senocrate, F. Bernasconi, N. Plainpan, P. Kraus, C. BattagliaNat. Catal. 2024, 7, 742. DOI: 10.1038/s41929-024-01172-x. Dataset: 10.5281/zenodo.8319625 (Zenodo).
  64. 2

    Performance polyamides built on a sustainable carbohydrate core

    L.P. Manker, M.A. Hedou, C. Broggi, M.J. Jones, K. Kortsen, K. Puvanenthiran, Y. Kupper, H. Frauenrath, F. Marechal, V. Michaud, R. Marti, M.P. Shaver, J.S. LuterbacherNat. Sustain. 2024, 7, 640. DOI: 10.1038/s41893-024-01298-7. Dataset: 10.5281/zenodo.8321484 (Zenodo).
  65. Probing surface transformations of lanthanum nickelate electrocatalysts during oxygen evolution reaction

    Y. Wu, M. Janák, P.M. Abdala, C.N. Borca, A. Wach, A. Kierzkowska, F. Donat, T. Huthwelker, D.A. Kuznetsov, C.R. MüllerJ. Am. Chem. Soc. 2024, 146, 11887. DOI: 10.1021/jacs.4c00863. Dataset: 10.5281/zenodo.12699529 (Zenodo).
  66. Quantification of native lignin structural features with gel‐phase 2D‐HSQC0 reveals lignin structural changes during extraction

    C. Bourmaud, S. Bertella, A. Bosch Rico, S.D. Karlen, J. Ralph, J.S. LuterbacherAngew. Chem. 2024, 136, e202404442. DOI: 10.1002/ange.202404442. Dataset: 10.1002/ange.202404442 (GitHub).
  67. Quasi-operando transmission electron microscopy diagnostics for electrocatalytic processes in liquids

    V. TileliChimia 2024, 78, 339. DOI: 10.2533/chimia.2024.339.
  68. RAFT polymerization of renewable monomers with dithiobenzoates: Effect of Z-group substituents and reaction conditions

    S. Boner, K. Parkatzidis, N.D.A. Watuthanthrige, A. AnastasakiEur. Polym. J. 2024, 205, 112721. DOI: 10.1016/j.eurpolymj.2023.112721.
  69. Rate-determining step for electrochemical reduction of carbon dioxide into carbon monoxide at silver electrodes

    E. Boutin, S. HaussenerACS Catal. 2024, 14, 8437. DOI: 10.1021/acscatal.4c00192.
  70. 2

    Reaction-agnostic featurization of bidentate ligands for Bayesian ridge regression of enantioselectivity

    A. Schoepfer, R. Laplaza, M.D. Wodrich, J. Waser, C. CorminboeufACS Catal. 2024, 14, 9302. DOI: 10.1021/acscatal.4c02452. Dataset: 10.24435/materialscloud:c0-7z (Materials Cloud).
  71. Reactivity switch of platinum with gallium: From reverse water gas shift to methanol synthesis

    W. Zhou, E. Brack, C. Ehinger, J. Paterson, J. Southouse, C. CopéretJ. Am. Chem. Soc. 2024, 146, 10806. DOI: 10.1021/jacs.4c01144. Dataset: 10.5281/zenodo.12165447 (Zenodo).
  72. 2

    Reversible transformation of sub-nanometer Ga-based clusters to isolated [4]Ga(4Si) sites creates active centers for propane dehydrogenation

    C. Zixuan, A.I. Serykh, A. Kierzkowska, D. Gajan, S.R. Docherty, A. Yakimov, P.M. Abdala, C. Copéret, P. Florian, A. Fedorov, C.R. MüllerCatal. Sci. Technol. 2024, 14, 379. DOI: 10.1039/d3cy01446k. Dataset: 10.1039/d3cy01446k (Zenodo).
  73. SCINE—Software for chemical interaction networks

    T. Weymuth, J.P. Unsleber, P.L. Türtscher, M. Steiner, J. Sobez, C.H. Müller, M. Mörchen, V. Klasovita, S. Grimmel, M. Eckhoff, K. Csizi, F. Bosia, M. Bensberg, M. ReiherJ. Chem. Phys. 2024, 160, 222501. DOI: 10.1063/5.0206974. Dataset: 10.5281/zenodo.11048377 (Zenodo).
  74. SOMOphilic alkyne vs radical-polar crossover approaches: The full story of the azido-alkynylation of alkenes

    J. Borrel, J. WaserBeilstein J. Org. Chem. 2024, 20, 701. DOI: 10.3762/bjoc.20.64.
  75. Self‐standing metal foam catalysts for cathodic electro‐organic synthesis

    P. Moreno-García, M.d.J. Gálvez‐Vázquez, T. Prenzel, J. Winter, L. Gálvez‐Vázquez, P. Broekmann, S.R. WaldvogelAdv. Mater. 2024, 36, 2307461. DOI: 10.1002/adma.202307461.
  76. Solid-state 183W NMR spectroscopy as a high-resolution probe of polyoxotungstate structures and dynamics

    Z.J. Berkson, M. Bernhardt, C. CopéretJ. Phys. Chem. Lett. 2024, 15, 1950. DOI: 10.1021/acs.jpclett.4c00033.
  77. 2

    Solution-based Cu+ transient species mediate the reconstruction of copper electrocatalysts for CO2 reduction

    J. Vavra, G.P.L. Ramona, F. Dattila, A. Kormányos, T. Priamushko, P.P. Albertini, A. Loiudice, S. Cherevko, N. López, R. BuonsantiNat. Catal. 2024, 7, 89. DOI: 10.1038/s41929-023-01070-8. Dataset: 10.5281/zenodo.8407241 (Zenodo).
  78. Standardizing chemical compounds with language models

    M.T. Cretu, A. Toniato, A. Thakkar, A.A. Debabeche, T. Laino, A.C. VaucherMach. Learn.: Sci. Technol. 2024, 4, 035014. DOI: 10.1088/2632-2153/ace878. Dataset: rxn4chemistry/rxn-standardization (GitHub).
  79. Structural comparison of (hyper‐)thermophilic nitrogenase reductases from three marine Methanococcales

    N. Maslać, C. Cadoux, P. Bolte, F. Murken, W. Gu, R.D. Milton, T. WagnerThe FEBS journal 2024, 291, 3454. DOI: 10.1111/febs.17148.
  80. 2

    Structure and role of a Ga-promoter in Ni-based catalysts for the selective hydrogenation of CO2 to methanol

    N.K. Zimmerli, L. Rochlitz, S. Checchia, C.R. Müller, C. Copéret, P.M. AbdalaJACS Au 2024, 4, 237. DOI: 10.1021/jacsau.3c00677. Dataset: 10.5281/zenodo.12698197 (Zenodo).
  81. Tandem catalysis enables chlorine-containing waste as chlorination reagents

    M. Liu, X. Wu, P.J. DysonNat. Chem. 2024, 16, 700. DOI: 10.1038/s41557-024-01462-8. Dataset: 10.5281/zenodo.8271972 (Zenodo).
  82. Technology readiness and emerging prospects of coupled catalytic reactions for sustainable chemical value chains

    P. Preikschas, J. Pérez-RamírezChemSusChem 2024, online, e202400865. DOI: 10.1002/cssc.202400865.
  83. 2

    The environmental sustainability of digital content consumption

    I. Istrate, V. Tulus, R.N. Grass, L. Vanbever, M. Stucki, G. Guillén‐GosálbezNat. Commun. 2024, 15, 3724. DOI: 10.1038/s41467-024-47621-w. Dataset: 10.5281/zenodo.7575568 (Zenodo).
  84. 2

    The future of chemical sciences is sustainable

    S. Mitchell, A.J. Martín, G. Guillén‐Gosálbez, J. Pérez-RamírezAngew. Chem. 2024, 63, e202318676. DOI: 10.1002/anie.202318676.
  85. The impact of oxygen surface coverage and carbidic carbon on the activity and selectivity of two-dimensional molybdenum carbide (2D-Mo2C) in Fischer–Tropsch synthesis

    E. Kountoupi, A.J. Barrios, C. Zixuan, C.R. Müller, V.V. Ordomsky, A. Comas-Vives, A. FedorovACS Catal. 2024, 14, 1834. DOI: 10.1021/acscatal.3c03956. Dataset: 10.5281/zenodo.12758711 (Zenodo).
  86. 2

    The need to integrate mass- and energy-based metrics with life cycle impacts for sustainable chemicals manufacture

    E. Lucas, A.J. Martín, S. Mitchell, A. Nabera, L.F. Santos, J. Pérez-Ramírez, G. Guillén‐GosálbezGreen Chem. 2024, 26, 9300. DOI: 10.1039/d4gc00394b.
  87. The role of chemical and solvent-based recycling within a sustainable circular economy for plastics

    M. Klotz, C. Oberschelp, C. Salah, L. Subal, S. HellwegSci. Total Environ. 2024, 906, 167586. DOI: 10.1016/j.scitotenv.2023.167586. Dataset: ecological-systems-design/sustainable-circular-economy-for-plastics (GitHub).
  88. Tracking coordination environment and reaction intermediates in homogeneous and heterogeneous epoxidation catalysts via Ti L2,3-edge near-edge X-ray absorption fine structures

    L. Lätsch, S.A. Guda, V. Romankov, C. Wartmann, J. Neudörfl, J. Dreiser, A. Berkessel, A.A. Guda, C. CopéretJ. Am. Chem. Soc. 2024, 146, 7456. DOI: 10.1021/jacs.3c12831. Dataset: 10.5281/zenodo.12165495 (Zenodo).
  89. Transcending scales in catalysis for sustainable development

    S. Mitchell, A.J. Martín, J. Pérez-RamírezNat. Chem. Eng. 2024, 1, 13. DOI: 10.1038/s44286-023-00005-1.
  90. Uncovering atomic-scale dynamics in solid catalysts via X-ray-based methods

    P.M. Abdala, C.R. MüllerChimia 2024, 78, 297. DOI: 10.2533/chimia.2024.297.
  91. Water structure in the first layers on TiO2: A key factor for boosting solar-driven water-splitting performances

    R. Verduci, F. Creazzo, F. Tavella, S. Abate, C. Ampelli, S. Luber, S. Perathoner, G. Cassone, G. Centi, G. D’AngeloJ. Am. Chem. Soc. 2024, 146, 18061. DOI: 10.1021/jacs.4c05042.
  92. X-ray spectroscopy at the SuperXAS and Debye beamlines: From in situ to operando

    A. Bugaev, A.H. Clark, N.S. Genz, O.V. Safonova, G. Smolentsev, M. NachtegaalChimia 2024, 78, 304. DOI: 10.2533/chimia.2024.304.
  93. 2023

  94. A customized Bayesian algorithm to optimize enzyme-catalyzed reactions

    R. Tachibana, K. Zhang, Z. Zou, S. Burgener, T.R. WardACS Sustainable Chem. Eng. 2023, 11, 12336. DOI: 10.1021/acssuschemeng.3c02402. Dataset: 10.5281/zenodo.8305660 (Zenodo).
  95. A general and robust Ni-based nanocatalyst for selective hydrogenation reactions at low temperature and pressure

    Y. Hu, M. Liu, S. Bartling, H. Lund, H. Atia, A. van Muyden, M. Beller, R.V. JagadeeshSci. Adv. 2023, 9, e202200626. DOI: 10.1126/sciadv.adj8225.
  96. 2

    Absolute environmental sustainability assessment of renewable dimethyl ether fuelled heavy-duty trucks

    M.A. Charalambous, V. Tulus, M. Ryberg, J. Pérez-Ramírez, G. Guillén‐GosálbezSustainable Energy Fuels 2023, 7, 1930. DOI: 10.1039/D2SE01409B. Dataset: 10.5281/zenodo.8250270 (Zenodo).
  97. Absolute sustainability assessment of flue gas valorization to ammonia and synthetic natural gas

    S.C. D'Angelo, J. Mache, G. Guillén‐GosálbezACS Sustainable Chem. Eng. 2023, 11, 17718. DOI: 10.1021/acssuschemeng.3c05246.
  98. Accelerating reaction network explorations with automated reaction template extraction and application

    J.P. UnsleberJ. Chem. Inf. Model. 2023, 63, 3392. DOI: 10.1021/acs.jcim.3c00102. Dataset: 10.5281/zenodo.7829302 (Zenodo).
  99. Acyl-ethynylbenziodoxolone (acyl-EBX): Access to ketene dithioarylacetals

    P. Palamini, J. Borrel, M. Djaïd, M. Delattre, J. WaserOrg. Lett. 2023, 25, 7535. DOI: 10.1021/acs.orglett.3c02869. Dataset: 10.5281/zenodo.8366598 (Zenodo).
  100. Advances in heterogeneous single-cluster catalysis

    X. Li, S. Mitchell, Y. Fang, J. Li, J. Pérez-Ramírez, J. LuNat. Rev. Chem. 2023, 7, 754. DOI: 10.1038/s41570-023-00540-8.
  101. Advances in noncanonical amino acid incorporation for enzyme engineering applications

    S. Giger, R.M. BullerChimia 2023, 77, 395. DOI: 10.2533/chimia.2023.395.
  102. 3

    Aiming for more sustainable cross-coupling chemistry by employing single-atom catalysis on scale

    D. Poier, S. Mitchell, V. Tulus, G. Guillén‐Gosálbez, J. Pérez-Ramírez, R. MartiChimia 2023, 77, 127. DOI: 10.2533/chimia.2023.127.
  103. Aligned diffusion Schrödinger bridges

    V.R. Somnath, M. Pariset, Y. Hsieh, M.R. Martínez, A. Krause, C. BunneUAI 2023, 216, 1985. DOI: 10.48550/arxiv.2302.11419. Dataset: vsomnath/aligned_diffusion_bridges (GitHub).
  104. Altering oxygen binding by redox-inactive metal substitution to control catalytic activity: oxygen reduction on manganese oxide nanoparticles as a model system

    Y. Wu, H. Mehta, E. Willinger, J.A. Yuwono, P.V. Kumar, P.M. Abdala, A. Wach, A. Kierzkowska, F. Donat, D.A. Kuznetsov, C.R. MüllerAngew. Chem. 2023, 62, e202217186. DOI: 10.1002/anie.202217186. Dataset: 10.1002/anie.202217186 (Zenodo).
  105. An artificial [Fe4S4]-containing metalloenzyme for the reduction of CO2 to hydrocarbons

    V. Waser, M. Mukherjee, R. Tachibana, N.V. Igareta, T.R. WardJ. Am. Chem. Soc. 2023, 145, 14823. DOI: 10.1021/jacs.3c03546. Dataset: 10.5281/zenodo.8134490 (Zenodo).
  106. Aqueous stability and redox chemistry of synthetic [Fe4S4] clusters

    V. Waser, T.R. WardCoord. Chem. Rev. 2023, 495, 215377. DOI: 10.1016/j.ccr.2023.215377.
  107. Artificial intelligence for natural product drug discovery

    M.W. Mullowney, K.R. Duncan, S.S. Elsayed, N. Garg, J.J.J. van der Hooft, N.I. Martin, D. Meijer, B.R. Terlouw, F. Biermann, K. Blin, J. Durairaj, M. Gorostiola González, E.J.N. Helfrich, F. Huber, S. Leopold-Messer, K. Rajan, T. de Rond, J.A. van Santen, M. Sorokina, M.J. Balunas, M.A. Beniddir, D.A. van Bergeijk, L.M. Carroll, C.M. Clark, D. Clevert, C.A. Dejong, C. Du, S. Ferrinho, F. Grisoni, A. Hofstetter, W. Jespers, O.V. Kalinina, S.A. Kautsar, H. Kim, T.F. Leao, J. Masschelein, E.R. Rees, R. Reher, D. Reker, P. Schwaller, M. Segler, M.A. Skinnider, A.S. Walker, E.L. Willighagen, B. Zdrazil, N. Ziemert, R.J.M. Goss, P. Guyomard, A. Volkamer, W.H. Gerwick, H.U. Kim, R. Müller, G.P. van Wezel, G.J.P. van Westen, A.K.H. Hirsch, R.G. Linington, S.L. Robinson, M.H. MedemaNat. Rev. Drug Discov. 2023, 22, 895. DOI: 10.1038/s41573-023-00774-7.
  108. Artificial metalloenzyme-catalyzed enantioselective amidation via nitrene insertion in unactivated C(sp3)–H bonds

    K. Yu, Z. Zou, N.V. Igareta, R. Tachibana, J. Bechter, V. Köhler, D. Chen, T.R. WardJ. Am. Chem. Soc. 2023, 145, 16621. DOI: 10.1021/jacs.3c03969. Dataset: 10.5281/zenodo.8272174 (Zenodo).
  109. Automated multiscale simulation environment

    A. Sabadell-Rendón, K. Kaźmierczak, S. Morandi, F. Euzenat, D. Curulla-Ferré, N. LópezDigital Discovery 2023, 2, 1721. DOI: 10.1039/d3dd00163f. Dataset: lopezgroup-iciq/amuse (GitHub).
  110. Azido-alkynylation of alkenes through radical-polar crossover

    J. Borrel, J. WaserChem. Sci. 2023, 14, 9452. DOI: 10.1039/d3sc03309k. Dataset: 10.5281/zenodo.8239023 (Zenodo).
  111. Bayesian optimization for chemical reactions

    J. Guo, B. Ranković, P. SchwallerChimia 2023, 77, 31. DOI: 10.2533/chimia.2023.31.
  112. Biomimetic tail-to-head terpene cyclizations using the resorcin[4]arene capsule catalyst

    I. Cornu, L. Syntrivanis, K. TiefenbacherNat. Protoc. 2023, 19, 313. DOI: 10.1038/s41596-023-00919-3. Dataset: 10.5281/zenodo.10052551 (Zenodo).
  113. Boosting nitrate to ammonia electroconversion through hydrogen gas evolution over Cu-foam@mesh catalysts

    Y. Wang, A. Dutta, A. Iarchuk, C. Sun, S. Vesztergom, P. BroekmannACS Catal. 2023, 13, 8169. DOI: 10.1021/acscatal.3c00716. Dataset: 10.5281/zenodo.7446294 (Zenodo).
  114. Challenges and opportunities in engineering the electronic structure of single-atom catalysts

    V. Giulimondi, S. Mitchell, J. Pérez-RamírezACS Catal. 2023, 13, 2981. DOI: 10.1021/acscatal.2c05992.
  115. 2

    Chlorine-promoted copper catalysts for CO2 electroreduction into highly reduced products

    T. Zou, F.L.P. Veenstra, E. Ibáñez-Alé, R. García‐Muelas, G. Zichittella, A.J. Martín, N. López, J. Pérez-RamírezCell Rep. Phys. Sci. 2023, 4, 101294. DOI: 10.1016/j.xcrp.2023.101294. Datasets: 10.19061/iochem-bd-1-258 (ioChem-BD), 10.5281/zenodo.7199360 (Zenodo).
  116. Colloidal CsPbX3 nanocrystals with thin metal oxide gel coatings

    D. Guggisberg, S. Yakunin, C. Neff, M. Aebli, D. Günther, M.V. Kovalenko, D.N. DirinChem. Mater. 2023, 35, 2827. DOI: 10.1021/acs.chemmater.2c03562. Dataset: 10.5281/zenodo.7645376 (Zenodo).
  117. Colloidal-ALD-grown metal oxide shells enable the synthesis of photoactive ligand/nanocrystal composite materials

    P.B. Green, O. Segura Lecina, P.P. Albertini, A. Loiudice, R. BuonsantiJ. Am. Chem. Soc. 2023, 145, 8189. DOI: 10.1021/jacs.3c01439. Dataset: 10.5281/zenodo.7707974 (Zenodo).
  118. 3

    Combining atomic layer deposition with surface organometallic chemistry to enhance atomic-scale interactions and improve the activity and selectivity of Cu–Zn/SiO2 catalysts for the hydrogenation of CO2 to methanol

    H. Zhou, S.R. Docherty, N. Phongprueksathat, C. Zixuan, A.V. Bukhtiyarov, I.P. Prosvirin, O.V. Safonova, A. Urakawa, C. Copéret, C.R. Müller, A. FedorovJACS Au 2023, 3, 2536. DOI: 10.1021/jacsau.3c00319. Dataset: 10.5281/zenodo.8420551 (Zenodo).
  119. Controlling the selectivity of the hydrogenolysis of polyamides catalysed by ceria-supported metal nanoparticles

    X. Wu, W. Lee, R.C. Turnell-Ritson, P.C.L. Delannoi, K. Lin, P.J. DysonNat. Commun. 2023, 14, 6524. DOI: 10.1038/s41467-023-42246-x. Dataset: 10.5281/zenodo.8356468 (Zenodo).
  120. Copper (I)-BOX catalyzed asymmetric 3-component reaction for the synthesis of trifluoromethylated propargylic ethers and anilines

    N.P. Ramirez, J. WaserAngew. Chem. 2023, 62, e202305776. DOI: 10.1002/anie.202305776. Dataset: 10.5281/zenodo.7991566 (Zenodo).
  121. Copper-catalyzed benzylic functionalization of lignin-derived monomers

    L. Lavrencic, U. Dhawa, A. Blumenstein, X. HuChemSusChem 2023, 16, e202300703. DOI: 10.1002/cssc.202300703. Dataset: 10.5281/zenodo.8019944 (Zenodo).
  122. Current strategies for industrial plastic production from non-edible biomass

    L.P. Manker, M.J. Jones, S. Bertella, J. Behaghel de Bueren, J.S. LuterbacherCurr. Opin. Green Sustainable Chem. 2023, 41, 100780. DOI: 10.1016/j.cogsc.2023.100780.
  123. Cyclopentadienone triisocyanide iron complexes: general synthesis and crystal structures of tris(2,6-dimethylphenyl isocyanide)(η4-tetraphenylcyclopentadienone)iron and tris(naphthalen-2-yl isocyanide)(η4-tetraphenylcyclopentadienone)iron acetone hemisolvate

    A. Bütikofer, P. ChenActa Crystallogr. 2023, 79, 626. DOI: 10.1107/s205698902300498x. Dataset: 10.5281/zenodo.8095929 (Zenodo).
  124. Data-driven elucidation of flavor chemistry

    X. Kou, P. Shi, C. Gao, P. Ma, H. Xing, Q. Ke, D. ZhangJ. Agric. Food Chem. 2023, 71, 6789. DOI: 10.1021/acs.jafc.3c00909. Dataset: 10.5281/zenodo.8027986 (Zenodo).
  125. Data‐driven discovery of organic electronic materials enabled by hybrid top‐down/bottom‐up design

    J.T. Blaskovits, R. Laplaza, S. Vela, C. CorminboeufAdv. Mater. 2023, 36, 2305602. DOI: 10.1002/adma.202305602. Dataset: 10.24435/materialscloud:aa-2w (Materials Cloud).
  126. Deciphering the structural dynamics in molten salt-promoted MgO-based CO2 sorbents and their role in the CO2 uptake

    M. Rekhtina, M. Krödel, Y. Wu, A. Kierzkowska, F. Donat, P.M. Abdala, C.R. MüllerSci. Adv. 2023, 9, eadg5690. DOI: 10.1126/sciadv.adg5690. Dataset: 10.5281/zenodo.7835859 (Zenodo).
  127. 4

    Design of flame-made ZnZrOX catalysts for sustainable methanol synthesis from CO2

    T. Pinheiro Araújo, J. Morales‐Vidal, T. Zou, M. Agrachev, S. Verstraeten, P.O. Willi, R.N. Grass, G. Jeschke, S. Mitchell, N. López, J. Pérez-RamírezAdv. Energy Mater. 2023, 13, 2204122. DOI: 10.1002/aenm.202204122. Datasets: 10.5281/zenodo.7359881 (Zenodo), 10.19061/iochem-bd-1-259 (ioChem-BD).
  128. Designing catalysts with deep generative models and computational data. A case study for Suzuki cross coupling reactions

    O.T. Schilter, A.C. Vaucher, P. Schwaller, T. LainoDigital Discovery 2023, 2, 728. DOI: 10.1039/d2dd00125j. Dataset: 10.24435/materialscloud:2018.0014/v1 (Materials Cloud).
  129. Direct conversion of lignin to functionalized diaryl ethers via oxidative cross-coupling

    M. Liu, P.J. DysonNat. Commun. 2023, 14, 2830. DOI: 10.1038/s41467-023-38534-1. Dataset: 10.5281/zenodo.8271972 (Zenodo).
  130. Direct electroreduction of carbonate to formate

    H. Ma, E. Ibáñez-Alé, R. Ganganahalli, J. Pérez-Ramírez, N. López, B.S. YeoJ. Am. Chem. Soc. 2023, 145, 24707. DOI: 10.1021/jacs.3c08079. Dataset: 10.19061/iochem-bd-1-265 (ioChem-BD).
  131. Dual nickel/photoredox-catalyzed asymmetric carbosulfonylation of alkenes

    X. Du, I. Cheng-Sánchez, C. NevadoJ. Am. Chem. Soc. 2023, 145, 12532. DOI: 10.1021/jacs.3c00744.
  132. 2

    Economic and environmental competitiveness of ethane-based technologies for vinyl chloride synthesis

    J.D. Medrano‐García, V. Giulimondi, A. Ceruti, G. Zichittella, J. Pérez-Ramírez, G. Guillén‐GosálbezACS Sustainable Chem. Eng. 2023, 11, 13062. DOI: 10.1021/acssuschemeng.3c03006.
  133. Economic and environmental performance of an integrated CO2 refinery

    I. Ioannou, J. Javaloyes-Antón, J.A. Caballero, G. Guillén‐GosálbezACS Sustainable Chem. Eng. 2023, 11, 1949. DOI: 10.1021/acssuschemeng.2c06724. Dataset: 10.5281/zenodo.8271809 (Zenodo).
  134. Effective perspiration is essential to uphold the stability of zero-gap MEA-based cathodes used in CO2 electrolysers

    A. Krause, H. Hu, Y. Kong, M. Liu, V. Kolivoška, A.V. Rudnev, Y.A. Hou, R. Erni, S. Vesztergom, P. BroekmannJ. Mater. Chem. A 2023, 11, 5083. DOI: 10.1039/D2TA06965B. Dataset: 10.5281/zenodo.7002917 (Zenodo).
  135. 2

    Eliminating flooding-related issues in electrochemical CO₂-to-CO converters: two lines of defense

    S. Vesztergom, A. Senocrate, Y. Kong, V. Kolivoška, F. Bernasconi, R. Zboray, C. Battaglia, P. BroekmannChimia 2023, 77, 104. DOI: 10.2533/chimia.2023.104.
  136. 2

    Enabling direct photoelectrochemical H₂ production using alternative oxidation reactions on WO₃

    N. Plainpan, R. Ketkaew, S. Luber, K. SivulaChimia 2023, 77, 110. DOI: 10.2533/chimia.2023.110.
  137. Enantioselective total synthesis of (−)-artatrovirenol A

    R. Lavernhe, P. Domke, Q. Wang, J. ZhuJ. Am. Chem. Soc. 2023, 145, 24408. DOI: 10.1021/jacs.3c09683.
  138. 2

    Energy crisis in Europe enhances the sustainability of green chemicals

    A. Nabera, I. Istrate, A.J. Martín, J. Pérez-Ramírez, G. Guillén‐GosálbezGreen Chem. 2023, 25, 6603. DOI: 10.1039/D3GC01053H. Dataset: 10.5281/zenodo.8246472 (Zenodo).
  139. Enhancing C≥2 product selectivity in electrochemical CO2 reduction by controlling the microstructure of gas diffusion electrodes

    F. Bernasconi, A. Senocrate, P. Kraus, C. BattagliaEES Catal. 2023, 1, 1009. DOI: 10.1039/d3ey00140g. Dataset: 10.5281/zenodo.8211440 (Zenodo).
  140. Enhancing diversity in language based models for single-step retrosynthesis

    A. Toniato, A.C. Vaucher, P. Schwaller, T. LainoDigital Discovery 2023, 2, 489. DOI: 10.1039/d2dd00110a. Dataset: 10.5281/zenodo.8271015 (Zenodo).
  141. 2

    Environmental and economic potential of decentralised electrocatalytic ammonia synthesis powered by solar energy

    S.C. D'Angelo, A.J. Martín, S. Cobo, D. Freire Ordóñez, G. Guillén‐Gosálbez, J. Pérez-RamírezEnergy Environ. Sci. 2023, 16, 3314. DOI: 10.1039/D2EE02683J. Dataset: 10.5281/zenodo.7675514 (Zenodo).
  142. 2

    Environmental sustainability assessment of hydrogen from waste polymers

    C. Salah, S. Cobo, J. Pérez-Ramírez, G. Guillén‐GosálbezACS Sustainable Chem. Eng. 2023, 11, 3238. DOI: 10.1021/acssuschemeng.2c05729. Dataset: 10.5281/zenodo.8248120 (Zenodo).
  143. Environmental sustainability assessment of large-scale hydrogen production using prospective life cycle analysis

    T. Weidner, V. Tulus, G. Guillén‐GosálbezInt. J. Hydrogen Energy 2023, 48, 8310. DOI: 10.1016/j.ijhydene.2022.11.044. Dataset: 10.5281/zenodo.8246660 (Zenodo).
  144. 3

    Evidence of bifunctionality of carbons and metal atoms in catalyzed acetylene hydrochlorination

    V. Giulimondi, A. Ruiz-Ferrando, G. Giannakakis, I. Surin, M. Agrachev, G. Jeschke, F. Krumeich, N. López, A.H. Clark, J. Pérez-RamírezNat. Commun. 2023, 14, 5557. DOI: 10.1038/s41467-023-41344-0. Datasets: 10.5281/zenodo.7855566 (Zenodo), 10.19061/iochem-bd-1-284 (ioChem-BD).
  145. 2

    Facile functionalization of carbon electrodes for efficient electroenzymatic hydrogen production

    Y. Liu, S. Webb, P. Moreno-García, A. Kulkarni, P. Maroni, P. Broekmann, R.D. MiltonJACS Au 2023, 3, 124. DOI: 10.1021/jacsau.2c00551. Dataset: 10.5281/zenodo.6641837 (Zenodo).
  146. Fast customization of chemical language models to out-of-distribution data sets

    A. Toniato, A.C. Vaucher, M.M. Lehmann, T. Luksch, P. Schwaller, M. Stenta, T. LainoChem. Mater. 2023, 35, 8806. DOI: 10.1021/acs.chemmater.3c01406.
  147. Fast evaluation of the adsorption energy of organic molecules on metals via graph neural networks

    S.P. García Carrillo, S. Morandi, R.A. Vargas-Hernández, K. Jorner, Ž. Ivković, N. López, A. Aspuru-GuzikNat. Comput. Sci. 2023, 3, 433. DOI: 10.1038/s43588-023-00437-y. Datasets: 10.5281/zenodo.7750394 (Zenodo), 10.5281/zenodo.10410522 (Zenodo), 10.19061/iochem-bd-1-257 (ioChem-BD).
  148. From nature to industry: Harnessing enzymes for biocatalysis

    R.M. Buller, S. Lutz, R.J. Kazlauskas, R. Snajdrova, J.C. Moore, U.T. BornscheuerScience 2023, 382, eadh8615. DOI: 10.1126/science.adh8615.
  149. Genetic algorithms for the discovery of homogeneous catalysts

    S. Gallarati, P. van Gerwen, A. Schoepfer, R. Laplaza, C. CorminboeufChimia 2023, 77, 39. DOI: 10.2533/chimia.2023.39.
  150. Global site-specific health impacts of fossil energy, steel mills, oil refineries and cement plants

    C. Oberschelp, S. Pfister, S. HellwegScientific reports 2023, 13, 13708. DOI: 10.1038/s41598-023-38075-z. Dataset: 10.5281/zenodo.12719622 (Zenodo).
  151. 2

    Group 10 metal allyl amidinates: A family of readily accessible and stable molecular precursors to generate supported nanoparticles

    C. Ehinger, X. Zhou, M. Candrian, S.R. Docherty, S. Pollitt, C. CopéretJACS Au 2023, 3, 2314. DOI: 10.1021/jacsau.3c00334.
  152. Halogenases for the synthesis of small molecules

    E. Hegarty, J. Büchler, R.M. BullerCurr. Opin. Green Sustainable Chem. 2023, 41, 100784. DOI: 10.1016/j.cogsc.2023.100784.
  153. High-throughput ab initio reaction mechanism exploration in the cloud with automated multi-reference validation

    J.P. Unsleber, H. Liu, L. Talirz, T. Weymuth, M. Mörchen, A. Grofe, D. Wecker, C.J. Stein, A. Panyala, B. Peng, K. Kowalski, M. Troyer, M. ReiherJ. Chem. Phys. 2023, 158, 084803. DOI: 10.1063/5.0136526. Dataset: 10.5281/zenodo.7568996 (Zenodo).
  154. High-throughput computational solvent screening for lignocellulosic biomass processing

    L. König-Mattern, A.O. Komarova, A. Ghosh, S. Linke, L.K. Rihko-Struckmann, J.S. Luterbacher, K. SundmacherChem. Eng. J. 2023, 452, 139476. DOI: 10.1016/j.cej.2022.139476. Dataset: 10.5281/zenodo.8119797 (Zenodo).
  155. Implications of Ga promotion and metal–oxide interface from tailored PtGa propane dehydrogenation catalysts supported on carbon

    E. Brack, M. Plodinec, M.G. Willinger, C. CopéretChem. Sci. 2023, 14, 12739. DOI: 10.1039/d3sc04711c. Dataset: 10.5281/zenodo.8402733 (Zenodo).
  156. Improving enzyme fitness with machine learning

    D. Patsch, R.M. BullerChimia 2023, 77, 116. DOI: 10.2533/chimia.2023.116.
  157. Integrated conversion of lignocellulosic biomass to bio‐based amphiphiles using a functionalization‐defunctionalization approach

    S. Sun, G. De Angelis, S. Bertella, M.J. Jones, G.R. Dick, E. Amstad, J.S. LuterbacherAngew. Chem. 2023, 63, e202312823. DOI: 10.1002/anie.202312823. Dataset: 10.5281/zenodo.10161171 (Zenodo).
  158. Iron-catalyzed synthesis of α-azido α-amino esters via the alkylazidation of alkenes

    P. Palamini, E.M.D. Allouche, J. WaserOrg. Lett. 2023, 25, 6791. DOI: 10.1021/acs.orglett.3c02153. Dataset: 10.5281/zenodo.8183015 (Zenodo).
  159. Kinetic network modeling of the catalytic upgrading of biomass’s acetate fraction to aromatics

    A.M.I. Elkhaiary, B. Rozmysłowicz, J.H. Yeap, M.H. Studer, J.S. LuterbacherEnergy Fuels 2023, 37, 16172. DOI: 10.1021/acs.energyfuels.3c02300.
  160. 2

    Language models and protocol standardization guidelines for accelerating synthesis planning in heterogeneous catalysis

    M. Suvarna, A.C. Vaucher, S. Mitchell, T. Laino, J. Pérez-RamírezNat. Commun. 2023, 14, 7964. DOI: 10.1038/s41467-023-43836-5. Dataset: 10.5281/zenodo.10033139 (Zenodo).
  161. 3

    Lattice-stabilized chromium atoms on ceria for N2O synthesis

    Q. Yang, I. Surin, J. Geiger, H. Eliasson, M. Agrachev, V.A. Kondratenko, A. Zanina, F. Krumeich, G. Jeschke, R. Erni, E.V. Kondratenko, N. López, J. Pérez-RamírezACS Catal. 2023, 13, 15977. DOI: 10.1021/acscatal.3c04463.
  162. LibGENiE – A bioinformatic pipeline for the design of information-enriched enzyme libraries

    D. Patsch, M. Eichenberger, M. Voß, U.T. Bornscheuer, R.M. BullerComput. Struct. Biotechnol. J. 2023, 21, 4488. DOI: 10.1016/j.csbj.2023.09.013. Dataset: 10.1016/j.csbj.2023.09.013 (Materials Cloud).
  163. Likelihood ratio confidence sets for sequential decision making

    N. Emmenegger, M. Mutný, A. KrauseNeurIPS 2023. DOI: 10.48550/arxiv.2311.04402.
  164. 3

    Low-valent manganese atoms stabilized on ceria for nitrous oxide synthesis

    I. Surin, Z. Tang, J. Geiger, S. Damir, H. Eliasson, M. Agrachev, F. Krumeich, S. Mitchell, V.A. Kondratenko, E.V. Kondratenko, G. Jeschke, R. Erni, N. López, J. Pérez-RamírezAdv. Mater. 2023, 35, 2211260. DOI: 10.1002/adma.202211260. Datasets: 10.5281/zenodo.7380563 (Zenodo), 10.19061/iochem-bd-1-262 (ioChem-BD).
  165. 2

    Manganese transfer hydrogenases based on the biotin‐streptavidin technology

    W. Wang, R. Tachibana, Z. Zou, D. Chen, X. Zhang, K. Lau, F. Pojer, T.R. Ward, X. HuAngew. Chem. 2023, 62, e202311896. DOI: 10.1002/anie.202311896. Dataset: 10.5281/zenodo.8312812 (Zenodo).
  166. Microalgae biofuel for a heavy-duty transport sector within planetary boundaries

    R. Cabrera-Jiménez, V. Tulus, J. Gavaldà, L. Jiménez, G. Guillén‐Gosálbez, C. PozoACS Sustainable Chem. Eng. 2023, 11, 9359. DOI: 10.1021/acssuschemeng.3c00750. Dataset: 10.5281/zenodo.7850071 (Zenodo).
  167. Mixed‐metal ionothermal synthesis of metallophthalocyanine covalent organic frameworks for CO2 capture and conversion

    K.S. Song, P.W. Fritz, D.F. Abbott, L. Nga Poon, C.M. Caridade, F. Gándara, V. Mougel, A. CoskunAngew. Chem. 2023, 62, e202309775. DOI: 10.1002/anie.202309775. Dataset: 10.5281/zenodo.8220146 (Zenodo).
  168. Morphology and transport characterization of catalyst layers for CO2 reduction

    F. Lorenzutti, S. HaussenerJ. Electrochem. Soc. 2023, 170, 104507. DOI: 10.1149/1945-7111/acff1c.
  169. NMR-based quantification of liquid products in CO2 electroreduction on phosphate-derived nickel catalysts

    P. Preikschas, A.J. Martín, B.S. Yeo, J. Pérez-RamírezCommun. Chem. 2023, 6, 147. DOI: 10.1038/s42004-023-00948-9.
  170. 2

    Nature of GaOx shells grown on silica by atomic layer deposition

    C. Zixuan, N.K. Zimmerli, M. Zubair, A. Yakimov, S. Björgvinsdóttir, N. Alaniva, E. Willinger, A.B. Barnes, N.M. Bedford, C. Copéret, P. Florian, P.M. Abdala, A. Fedorov, C.R. MüllerChem. Mater. 2023, 35, 7475. DOI: 10.1021/acs.chemmater.3c00923.
  171. 2

    Net-zero transition of the global chemical industry with CO2-feedstock by 2050: feasible yet challenging

    J. Huo, Z. Wang, C. Oberschelp, G. Guillén‐Gosálbez, S. HellwegGreen Chem. 2023, 25, 415. DOI: 10.1039/D2GC03047K. Dataset: 10.5281/zenodo.8129254 (Zenodo).
  172. Nickel-catalyzed direct stereoselective α-allylation of ketones with non-conjugated dienes

    Y. Cao, M.D. Wodrich, N. CramerNat. Commun. 2023, 14, 7640. DOI: 10.1038/s41467-023-43197-z.
  173. Nickel-catalyzed enantioselective electrochemical reductive cross-coupling of aryl aziridines with alkenyl bromides

    X. Hu, I. Cheng-Sánchez, S. Cuesta-Galisteo, C. NevadoJ. Am. Chem. Soc. 2023, 145, 6270. DOI: 10.1021/jacs.2c12869.
  174. Nitrogen fixation and hydrogen evolution by sterically encumbered Mo-nitrogenase

    C. Cadoux, D. Ratcliff, N. Maslać, W. Gu, I. Tsakoumagkos, S. Hoogendoorn, T. Wagner, R.D. MiltonJACS Au 2023, 3, 1521. DOI: 10.1021/jacsau.3c00165. Dataset: 10.5281/zenodo.6865680 (Zenodo).
  175. ODEFormer: Symbolic regression of dynamical systems with transformers

    S. d’Ascoli, S. Becker, A. Mathis, P. Schwaller, N. KilbertusICLR 2023. DOI: 10.48550/arxiv.2310.05573. Dataset: sdascoli/odeformer (GitHub).
  176. Of glasses and crystals: Mitigating the deactivation of CaO-based CO2 sorbents through calcium aluminosilicates

    M. Krödel, C. Leroy, S.M. Kim, M.A. Naeem, A. Kierzkowska, Y. Wu, A. Armutlulu, A. Fedorov, P. Florian, C.R. MüllerJACS Au 2023, 3, 3111. DOI: 10.1021/jacsau.3c00475. Dataset: 10.5281/zenodo.12721657 (Zenodo).
  177. One-pot synthesis of functionalized bis(trifluoromethylated)benziodoxoles from iodine(i) precursors

    T.M. Milzarek, N.P. Ramirez, X. Liu, J. WaserChem. Commun. 2023, 59, 12637. DOI: 10.1039/d3cc04525k. Dataset: 10.5281/zenodo.8390247 (Zenodo).
  178. Operando photoelectron photoion coincidence spectroscopy to detect short-lived intermediates in catalysis

    Z. Zhang, J. Pérez-Ramírez, J.A. Van Bokhoven, A. Bodi, P. HembergerChimia 2023, 77, 132. DOI: 10.2533/chimia.2023.132.
  179. Pathways to enhance electrochemical CO2 reduction identified through direct pore-level modeling

    E.F. Johnson, E. Boutin, S. Liu, S. HaussenerEES Catal. 2023, 1, 704. DOI: 10.1039/D3EY00122A. Dataset: 10.5281/zenodo.8167572 (Zenodo).
  180. Photoion mass-selected threshold photoelectron spectroscopy to detect reactive intermediates in catalysis: From instrumentation and examples to peculiarities and a database

    P. Hemberger, Z. Pan, X. Wu, Z. Zhang, K. Kanayama, A. BodiJ. Phys. Chem. C 2023, 127, 16751. DOI: 10.1021/acs.jpcc.3c03120.
  181. Planetary boundaries assessment of deep decarbonisation options for building heating in the European Union

    T. Weidner, G. Guillén‐GosálbezEnergy Convers. Manage. 2023, 278, 116602. DOI: 10.1016/j.enconman.2022.116602. Dataset: 10.5281/zenodo.8246442 (Zenodo).
  182. Porous organic polymers for selective palladium recovery and heterogeneous catalysis

    K.S. Song, A. CoskunChimia 2023, 77, 122. DOI: 10.2533/chimia.2023.122.
  183. 2

    Quantitative description of metal center organization and interactions in single‐atom catalysts

    K. Rossi, A. Ruiz-Ferrando, D. Faust Akl, V.G. Abalos, J. Heras‐Domingo, R. Graux, X. Hai, J. Lu, D. Garcia-Gasulla, N. López, J. Pérez-Ramírez, S. MitchellAdv. Mater. 2023, 36, 2307991. DOI: 10.1002/adma.202307991. Datasets: 10.19061/iochem-bd-1-282 (ioChem-BD), 10.5281/zenodo.8095963 (Zenodo).
  184. 3

    Reaction environment design for multigram synthesis via Sonogashira coupling over heterogeneous palladium single-atom catalysts

    D. Poier, D. Faust Akl, E. Lucas, A.R. Machado, G. Giannakakis, S. Mitchell, G. Guillén‐Gosálbez, R. Marti, J. Pérez-RamírezACS Sustainable Chem. Eng. 2023, 11, 16935. DOI: 10.1021/acssuschemeng.3c04183.
  185. 5

    Reaction-induced formation of stable mononuclear Cu(I)Cl species on carbon for low-footprint vinyl chloride production

    D. Faust Akl, G. Giannakakis, A. Ruiz-Ferrando, M. Agrachev, J.D. Medrano‐García, G. Guillén‐Gosálbez, G. Jeschke, A.H. Clark, O.V. Safonova, S. Mitchell, N. López, J. Pérez-RamírezAdv. Mater. 2023, 35, 2211464. DOI: 10.1002/adma.202211464. Dataset: 10.5281/zenodo.7380519 (Zenodo).
  186. Reply to comment on ‘Physics-based representations for machine learning properties of chemical reactions’

    P. van Gerwen, M.D. Wodrich, R. Laplaza, C. CorminboeufMach. Learn.: Sci. Technol. 2023, 4, 048002. DOI: 10.1088/2632-2153/acee43. Dataset: lcmd-epfl/reply-physics-reactions (GitHub).
  187. 2

    Role and dynamics of transition metal carbides in methane coupling

    S. Zhang, Q. Pessemesse, L. Lätsch, KM. Engel, W.J. Stark, A.P. van Bavel, A.D. Horton, P. Payard, C. CopéretChem. Sci. 2023, 14, 5899. DOI: 10.1039/D3SC01054F.
  188. SPT-NRTL: a physics-guided machine learning model to predict thermodynamically consistent activity coefficient

    B. Winter, C. Winter, T. Esper, J. Schilling, A. BardowFluid Phase Equilib. 2023, 568, 113731. DOI: 10.1016/j.fluid.2023.113731.
  189. 2

    Structure of Na Species in promoted CaO-based sorbents and their effect on the rate and extent of the CO2 uptake

    M. Krödel, L. Abduly, M. Nadjafi, A. Kierzkowska, A. Yakimov, A.H. Bork, F. Donat, C. Copéret, P.M. Abdala, C.R. MüllerAdv. Funct. Mater. 2023, 33, 2302916. DOI: 10.1002/adfm.202302916. Datasets: 10.5281/zenodo.805545 (Zenodo), 10.1002/adfm.202302916 (Zenodo).
  190. Supramolecular capsule catalysis enables the exploration of terpenoid chemical space untapped by Nature

    I. Némethová, D. Schmid, K. TiefenbacherAngew. Chem. 2023, 62, e202218625. DOI: 10.1002/anie.202218625. Dataset: 10.1002/anie.202218625 (Zenodo).
  191. Surface charge boundary condition often misused in CO2 reduction models

    E.F. Johnson, E. Boutin, S. HaussenerJ. Phys. Chem. C 2023, 127, 18784. DOI: 10.1021/acs.jpcc.3c05364.
  192. Surface chemistry dictates the enhancement of luminescence and stability of InP QDs upon c-ALD ZnO hybrid shell growth

    O. Segura Lecina, M.A. Newton, P.B. Green, P.P. Albertini, J. Leemans, K.P. Marshall, D.C. Stoian, A. Loiudice, R. BuonsantiJACS Au 2023, 3, 3066. DOI: 10.1021/jacsau.3c00457. Dataset: 10.5281/zenodo.8377955 (Zenodo).
  193. Sustainable materials: Production methods and end-of-life strategies

    A. Ghosh, R. Buser, F. Héroguel, J.S. LuterbacherChimia 2023, 77, 848. DOI: 10.2533/chimia.2023.848.
  194. Synthesis of propargyl silanes from terminal alkynes via a migratory Sonogashira reaction

    M. Puriņš, L. Eichenberger, J. WaserChem. Commun. 2023, 59, 7931. DOI: 10.1039/D3CC01847D. Dataset: 10.5281/zenodo.7982434 (Zenodo).
  195. The catalytic role of glutathione transferases in heterologous anthocyanin biosynthesis

    M. Eichenberger, T. Schwander, S. Hüppi, J. Kreuzer, P.R.E. Mittl, F. Peccati, G. Jiménez-Osés, M. Naesby, R.M. BullerNat. Catal. 2023, 6, 927. DOI: 10.1038/s41929-023-01018-y. Dataset: 10.5281/zenodo.8069429 (Zenodo).
  196. The mononuclear metal-binding site of Mo-nitrogenase is not required for activity

    C. Cadoux, N. Maslać, L. Di Luzio, D. Ratcliff, W. Gu, T. Wagner, R.D. MiltonJACS Au 2023, 3, 2993. DOI: 10.1021/jacsau.3c00567. Dataset: 10.5281/zenodo.7973625 (Zenodo).
  197. The promotional role of Mn in CO2 hydrogenation over Rh-based catalysts from a surface organometallic chemistry approach

    W. Zhou, S.R. Docherty, C. Ehinger, X. Zhou, C. CopéretChem. Sci. 2023, 14, 5379. DOI: 10.1039/D3SC01163A. Dataset: 10.5281/zenodo.8276926 (Zenodo).
  198. The role of ionomers in the electrolyte management of zero-gap MEA-based CO2 electrolysers: a Fumion vs. Nafion comparison

    M. Liu, H. Hu, Y. Kong, I. Montiel, V. Kolivoška, A.V. Rudnev, Y.A. Hou, R. Erni, S. Vesztergom, P. BroekmannAppl. Catal. 2023, 335, 122885. DOI: 10.1016/j.apcatb.2023.122885. Dataset: 10.5281/zenodo.7117080 (Zenodo).
  199. Theory-guided development of homogeneous catalysts for the reduction of CO2 to formate, formaldehyde, and methanol derivatives

    H.H. Cramer, S. Das, M.D. Wodrich, C. Corminboeuf, C. Werlé, W. LeitnerChem. Sci. 2023, 14, 2799. DOI: 10.1039/D2SC06793E. Dataset: 10.5282/zenodo.8229079 (Zenodo).
  200. 3

    Toward in silico catalyst optimization

    M.D. Wodrich, R. Laplaza, N. Cramer, M. Reiher, C. CorminboeufChimia 2023, 77, 139. DOI: 10.2533/chimia.2023.139.
  201. Towards circular plastics within planetary boundaries

    M. Bachmann, C. Zibunas, J. Hartmann, V. Tulus, S. Suh, G. Guillén‐Gosálbez, A. BardowNat. Sustain. 2023, 6, 599. DOI: 10.1038/s41893-022-01054-9. Datasets: 10.5281/zenodo.6881557 (Zenodo), 10.5281/zenodo.5118762 (Zenodo).
  202. 2

    Trade-offs between Sustainable Development Goals in carbon capture and utilisation

    I. Ioannou, Á. Galán-Martín, J. Pérez-Ramírez, G. Guillén‐GosálbezEnergy Environ. Sci. 2023, 16, 113. DOI: 10.1039/D2EE01153K. Dataset: 10.5281/zenodo.8272032 (Zenodo).
  203. Transparent porous conductive substrates for gas-phase photoelectrochemical hydrogen production

    M. Caretti, E. Mensi, R.A. Kessler, L. Lazouni, B. Goldman, L. Carbone, S. Nussbaum, R. Wells, H. Johnson, E. Rideau, J.h. Yum, K. SivulaAdv. Mater. 2023, 35, 2208740. DOI: 10.1002/adma.202208740. Dataset: 10.5281/zenodo.8270024 (Zenodo).
  204. Ultrahigh mass activity Pt entities consisting of Pt single atoms, clusters, and nanoparticles for improved hydrogen evolution reaction

    Z. Zeng, S. Küspert, S.E. Balaghi, H.E.M. Hussein, N. Ortlieb, M. Knäbbeler-Buß, P. Hügenell, S. Pollitt, N. Hug, J. Melke, A. FischerSmall 2023, 19, 2205885. DOI: 10.1002/smll.202205885. Dataset: 10.5281/zenodo.8271889 (Zenodo).
  205. 2

    Unraveling radical and oxygenate routes in the oxidative dehydrogenation of propane over boron nitride

    Z. Zhang, J. Tian, X. Wu, I. Surin, J. Pérez-Ramírez, P. Hemberger, A. BodiJ. Am. Chem. Soc. 2023, 145, 7910. DOI: 10.1021/jacs.2c12970. Dataset: 10.16907/a8b0a8e7-8784-4789-847f-d21e52d4334c (PSI).
  206. X-ray and NMR structural data of ethynylbenziodoxolones (EBXs) reagents and their analogues

    E. Le Du, N.P. Ramirez, S. Nicolai, R. Scopelliti, F. Fadaei‐Tirani, M.D. Wodrich, D.P. Hari, J. WaserHelv. Chim. Acta 2023, 106, e202200175. DOI: 10.1002/hlca.202200175.
  207. X‐Ray and NMR structural data of ethynylbenziodoxolones (EBXs) reagents and their analogues

    E. Le Du, N.P. Ramirez, S. Nicolai, R. Scopelliti, F. Fadaei‐Tirani, M.D. Wodrich, D.P. Hari, J. WaserHelv. Chim. Acta 2023, 106, e202200175. DOI: 10.1002/hlca.202200175.
  208. Zwitterionic halido cyclopentadienone iron complexes and their catalytic performance in hydrogenation reactions

    A. Bütikofer, P. ChenInorg. Chem. 2023, 62, 4188. DOI: 10.1021/acs.inorgchem.2c04298. Dataset: 10.5281/zenodo.8099016 (Zenodo).
  209. 2022

  210. 1,3,2-Diazaphospholene-catalyzed reductive cyclizations of organohalides

    J. Klett, Ł. Woźniak, N. CramerAngew. Chem. 2022, 61, e202202306. DOI: 10.1002/anie.202202306. Dataset: 10.1002/anie.202202306 (Zenodo).
  211. cell2mol: encoding chemistry to interpret crystallographic data

    S. Vela, R. Laplaza, C. Yuri, C. Corminboeufnpj Comput. Mater. 2022, 8, 188. DOI: 10.1038/s41524-022-00874-9. Dataset: 10.24435/materialscloud:g5-5r (Materials Cloud).
  212. A cation concentration gradient approach to tune the selectivity and activity of CO2 electroreduction

    W. Ren, A. Xu, K. Chan, X. HuAngew. Chem. 2022, 61, e202214173. DOI: 10.1002/anie.202214173. Dataset: 10.5281/zenodo.6511898 (Zenodo).
  213. A concise review on recent developments of machine learning for the prediction of vibrational spectra

    R. Han, R. Ketkaew, S. LuberJ. Phys. Chem. A 2022, 126, 801. DOI: 10.1021/acs.jpca.1c10417.
  214. A generalized machine learning framework to predict the space-time yield of methanol from thermocatalytic CO2 hydrogenation

    M. Suvarna, T. Pinheiro Araújo, J. Pérez-RamírezAppl. Catal. 2022, 315, 121530. DOI: 10.1016/j.apcatb.2022.121530. Dataset: 10.5281/zenodo.6541445 (Zenodo).
  215. A smile is all you need: predicting limiting activity coefficients from SMILES with natural language processing

    B. Winter, C. Winter, J. Schilling, A. BardowFluid Phase Equilib. 2022, 1, 859. DOI: 10.1039/D2DD00058J. Dataset: 10.5281/zenodo.8271713 (Zenodo).
  216. Activity-based approach for selective molecular CO2 sensing

    O. Green, P. Finkelstein, M.A. Rivero-Crespo, M.D.R. Lutz, M.K. Bogdos, M. Burger, J. Leroux, B. MorandiJ. Am. Chem. Soc. 2022, 144, 8717. DOI: 10.1021/jacs.2c02361. Dataset: 10.1021/jacs.2c02361 (Zenodo).
  217. Advancing MXene electrocatalysts for energy conversion reactions: surface, stoichiometry, and stability

    C. Tsounis, P.V. Kumar, H. Masood, R.P. Kulkarni, G. Sai Gautam, C.R. Müller, R. Amal, D.A. KuznetsovAngew. Chem. 2022, 62, e202210828. DOI: 10.1002/anie.202210828.
  218. Algorithm-aided engineering of aliphatic halogenase WelO5* for the asymmetric late-stage functionalization of soraphens

    J. Büchler, S.H. Malca, D. Patsch, M. Voß, N.J. Turner, U.T. Bornscheuer, O. Allemann, C. Le Chapelain, A. Lumbroso, O. Loiseleur, R.M. BullerNat. Commun. 2022, 13, 371. DOI: 10.1038/s41467-022-27999-1. Dataset: 10.5281/zenodo.5665271 (Zenodo).
  219. An artificial metalloenzyme based on a copper heteroscorpionate enables sp3 C–H functionalization via intramolecular carbene insertion

    C. Rumo, A. Stein, J. Klehr, R. Tachibana, A. Prescimone, D. Häussinger, T.R. WardJ. Am. Chem. Soc. 2022, 144, 11676. DOI: 10.1021/jacs.2c03311. Dataset: 10.5281/zenodo.6793475 (Zenodo).
  220. 3

    Assessing the environmental benefit of palladium-based single-atom heterogeneous catalysts for Sonogashira coupling

    D. Faust Akl, D. Poier, S.C. D'Angelo, T. Pinheiro Araújo, V. Tulus, O.V. Safonova, S. Mitchell, R. Marti, G. Guillén‐Gosálbez, J. Pérez-RamírezGreen Chem. 2022, 24, 6879. DOI: 10.1039/D2GC01853E. Dataset: 10.5281/zenodo.6135989 (Zenodo).
  221. Assessing the environmental potential of hydrogen from waste polyethylene

    C. Salah, S. Cobo, G. Guillén‐GosálbezComput.-Aided Chem. Eng. 2022, 49, 1933. DOI: 10.1016/B978-0-323-85159-6.50322-5. Dataset: 10.5281/zenodo.8086271 (Zenodo).
  222. Assessing the persistence of chalcogen bonds in solution with neural network potentials

    V. Jurásková, F. CELERSE, R. Laplaza, C. CorminboeufJ. Chem. Phys. 2022, 156, 154112. DOI: 10.1063/5.0085153. Dataset: 10.24435/materialscloud:90-vd (Materials Cloud).
  223. Asymmetric cyclopropanation and epoxidation via a catalytically formed chiral auxiliary

    M. Puriņš, J. WaserAngew. Chem. 2022, 61, e202113925. DOI: 10.1002/anie.202113925. Dataset: 10.5281/zenodo.5848181 (Zenodo).
  224. 2

    Automated image analysis for single-atom detection in catalytic materials by transmission electron microscopy

    S. Mitchell, F. Parés, D. Faust Akl, S.M. Collins, D.M. Kepaptsoglou, Q.M. Ramasse, D. Garcia-Gasulla, J. Pérez-Ramírez, N. LópezJ. Am. Chem. Soc. 2022, 144, 8018. DOI: 10.1021/jacs.1c12466. Dataset: 10.5281/zenodo.5931544 (Zenodo).
  225. Autonomous reaction network exploration in homogeneous and heterogeneous catalysis

    M. Steiner, M. ReiherTop. Catal. 2022, 65, 6. DOI: 10.1007/s11244-021-01543-9. Dataset: 10.5281/zenodo.6340467 (Zenodo).
  226. Bayesian symbolic learning to build analytical correlations from rigorous process simulations: application to CO2 capture technologies

    V. Negri, D. Vázquez Vázquez, M. Sales-Pardo, R. Guimerà, G. Guillén‐GosálbezACS Omega 2022, 7, 41147. DOI: 10.1021/acsomega.2c04736. Dataset: 10.5281/zenodo.8239352 (Zenodo).
  227. Biocatalysed synthesis planning using data-driven learning

    D. Probst, M. Manica, Y.G. Nana Teukam, A. Castrogiovanni, F. Paratore, T. LainoNat. Commun. 2022, 13, 964. DOI: 10.1038/s41467-022-28536-w. Dataset: 10.5281/zenodo.6361411 (Zenodo).
  228. 3

    Catalytic synergies in bimetallic Ru-Pt single-atom catalysts via speciation control

    V. Giulimondi, A. Ruiz-Ferrando, A.H. Clark, S.K. Kaiser, F. Krumeich, A.J. Martín, N. López, J. Pérez-RamírezAdv. Funct. Mater. 2022, 32, 2206513. DOI: 10.1002/adfm.202206513. Datasets: 10.19061/iochem-bd-1-247 (ioChem-BD), 10.5281/zenodo.6929058 (Zenodo).
  229. Chemical looping partial oxidation of methane: reducing carbon deposition through alloying

    F. Donat, A. Kierzkowska, C.R. MüllerEnergy Fuels 2022, 36, 9780. DOI: 10.1021/acs.energyfuels.2c01345. Dataset: 10.1021/acs.energyfuels.2c01345 (Zenodo).
  230. Chlorination of arenes via the degradation of toxic chlorophenols

    M. Liu, X. Yang, P.J. DysonProc. Natl. Acad. Sci. U. S. A. 2022, 119, e2122425119. DOI: 10.1073/pnas.2122425119.
  231. Constructing and interpreting volcano plots and activity maps to navigate homogeneous catalyst landscapes

    R. Laplaza, S. Das, M.D. Wodrich, C. CorminboeufNat. Protoc. 2022, 17, 2550. DOI: 10.1038/s41596-022-00726-2. Dataset: 10.5281/zenodo.8229210 (Zenodo).
  232. Controlled formation of dimers and spatially isolated atoms in bimetallic Au-Ru catalysts via carbon-host functionalization

    V. Giulimondi, S.K. Kaiser, A.J. Martín, S. Büchele, F. Krumeich, A.H. Clark, J. Pérez-RamírezSmall 2022, 18, 2200224. DOI: 10.1002/smll.202200224. Dataset: 10.5281/zenodo.6325285 (Zenodo).
  233. Copper phosphonate lamella intermediates control the shape of colloidal copper nanocrystals

    J.R. Pankhurst, L. Castilla Amorós, D.C. Stoian, J. Vavra, V. Mantella, P.P. Albertini, R. BuonsantiJ. Am. Chem. Soc. 2022, 144, 12261. DOI: 10.1021/jacs.2c03489. Dataset: 10.5281/zenodo.6362954 (Zenodo).
  234. Cracks as efficient tools to mitigate flooding in gas diffusion electrodes used for the electrochemical reduction of carbon dioxide

    Y. Kong, M. Liu, H. Hu, Y.A. Hou, S. Vesztergom, M.d.J. Gálvez‐Vázquez, I. Montiel, V. Kolivoška, P. BroekmannSmall Methods 2022, 6, 2200369. DOI: 10.1002/smtd.202200369. Dataset: 10.5281/zenodo.6421142 (Zenodo).
  235. Cyclopentadienone iron complex-catalyzed hydrogenation of ketones: an operando spectrometric study using pressurized sample infusion-electrospray ionization-mass spectrometry

    A. Bütikofer, P. ChenOrganometallics 2022, 41, 2349. DOI: 10.1021/acs.organomet.2c00341. Dataset: 10.5281/zenodo.8099440 (Zenodo).
  236. Deciphering the structure of heterogeneous catalysts across scales using pair distribution function analysis

    N.K. Zimmerli, C.R. Müller, P.M. AbdalaTrends Chem. 2022, 4, 807. DOI: 10.1016/j.trechm.2022.06.006.
  237. DeepCV: A deep learning framework for blind search of collective variables in expanded configurational space

    R. Ketkaew, S. LuberJ. Chem. Inf. Model. 2022, 62, 6352. DOI: 10.1021/acs.jcim.2c00883. Dataset: 10.5281/zenodo.8141955 (Zenodo).
  238. Designing physics-based reaction representations

    P. van Gerwen, R. Fabregat I De Aguilar-Amat, A. Fabrizio, C. CorminboeufNeurIPS 2022, 3, 045005.
  239. 2

    Droplet-Based Microfluidics Platform for the Synthesis of Single-Atom Heterogeneous Catalysts

    T. Moragues, S. Mitchell, D. Faust Akl, J. Pérez-Ramírez, A. deMelloSmall Struct. 2022, 4, 2200284. DOI: 10.1002/sstr.202200284. Dataset: 10.5281/zenodo.7107186 (Zenodo).
  240. Economic and environmental barriers of CO2-based Fischer–Tropsch electro-diesel

    J.D. Medrano‐García, M.A. Charalambous, G. Guillén‐GosálbezACS Sustainable Chem. Eng. 2022, 10, 11751. DOI: 10.1021/acssuschemeng.2c01983. Dataset: 10.5281/zenodo.8036937 (Zenodo).
  241. 2

    Effects of surface wettability on (001)-WO and (100)-WSe: a spin-polarized DFT-MD study

    F. Creazzo, R. Ketkaew, K. Sivula, S. LuberAppl. Surf. Sci. 2022, 601, 154203. DOI: 10.1016/j.apsusc.2022.154203. Dataset: 10.5281/zenodo.8143365 (Zenodo).
  242. Electronic regulation of nickel single atoms by confined nickel nanoparticles for energy-efficient CO2 electroreduction

    W. Ren, X. Tan, C. Jia, A. Krammer, Q. Sun, J. Qu, S.C. Smith, A. Schueler, X. Hu, C. ZhaoAngew. Chem. 2022, 61, e202203335. DOI: 10.1002/anie.202203335. Dataset: 10.1002/anie.202203335 (Zenodo).
  243. Elucidating the transition between CO2 physisorption and chemisorption in 1,2,4-triazolate ionic liquids at a molecular level.

    X. Hu, X. Yang, P.J. DysonChem. Eng. J. 2022, 435, 134956. DOI: 10.1016/j.cej.2022.134956. Dataset: 10.5281/zenodo.6259193 (Zenodo).
  244. 5

    Elucidation of metal local environments in single-atom catalysts based on carbon nitrides

    S. Büchele, A. Yakimov, S.M. Collins, A. Ruiz-Ferrando, Z. Chen, E. Willinger, D.M. Kepaptsoglou, Q.M. Ramasse, C.R. Müller, O.V. Safonova, N. López, C. Copéret, J. Pérez-Ramírez, S. MitchellSmall 2022, 18, 2202080. DOI: 10.1002/smll.202202080. Dataset: 10.5281/zenodo.6359849 (Zenodo).
  245. 3

    Elucidation of radical- and oxygenate-driven paths in zeolite-catalysed conversion of methanol and methyl chloride to hydrocarbons

    A. Cesarini, S. Mitchell, G. Zichittella, M. Agrachev, S.P. Schmid, G. Jeschke, Z. Pan, A. Bodi, P. Hemberger, J. Pérez-RamírezNat. Catal. 2022, 5, 605. DOI: 10.1038/s41929-022-00808-0. Dataset: 10.5281/zenodo.6547649 (Zenodo).
  246. Enantioselective tail-to-head terpene cyclizations by optically active hexameric resorcin[4]arene capsule derivatives

    D. Sokolova, G. Piccini, K. TiefenbacherAngew. Chem. 2022, 61, e202203384. DOI: 10.1002/anie.202203384.
  247. Energy systems modeling and optimization for absolute environmental sustainability: current landscape and opportunities

    T. Weidner, Á. Galán-Martín, M. Ryberg, G. Guillén‐GosálbezComput. Chem. Eng. 2022, 164, 107883. DOI: 10.1016/j.compchemeng.2022.107883.
  248. Enzymatic and microbial electrochemistry: approaches and methods

    G. Bedendi, L.D.d.M. Torquato, S. Webb, C. Cadoux, A. Kulkarni, S. Sahin, P. Maroni, R.D. Milton, M. GrattieriACS Meas. Sci. Au 2022, 2, 517. DOI: 10.1021/acsmeasuresciau.2c00042.
  249. Enzyme engineering enables inversion of substrate stereopreference of the halogenase WelO5*

    M. Voß, S. Hüppi, D. Schaub, T. Hayashi, M. Ligibel, E. Sager, K. Schroer, R. Snajdrova, R.M. BullerChemCatChem 2022, 14, e202201115. DOI: 10.1002/cctc.202201115. Dataset: 10.2210/pdb8ACV/pdb (PDB).
  250. Evaluation of the potential use of e-fuels in the European aviation sector: a comprehensive economic and environmental assessment including externalities

    C. BunneSustainable Energy Fuels 2022, 6, 4749. DOI: 10.1039/D2SE00757F. Dataset: 10.5281/zenodo.8271785 (Zenodo).
  251. Evolving enzymatic electrochemistry with rare or unnatural amino acids

    S. Sahin, R.D. MiltonCurr. Opin. Electrochem. 2022, 35, 101102. DOI: 10.1016/j.coelec.2022.101102.
  252. Experimental design for linear functionals in reproducing kernel Hilbert spaces

    M. Mutný, A. KrauseFluid Phase Equilib. 2022. DOI: 10.48550/arXiv.2205.13627.
  253. Exploring photoredox-catalyzed (re)functionalizations with core-modified benziodoxolones

    S.G.E. Amos, F. Le Vaillant, J. WaserHelv. Chim. Acta 2022, 106, e202200161. DOI: 10.1002/hlca.202200161. Dataset: 10.5281/zenodo.8178921 (Zenodo).
  254. 4

    Flame spray pyrolysis as a synthesis platform to assess metal promotion in In2O3‐catalyzed CO2 hydrogenation

    T. Pinheiro Araújo, J. Morales‐Vidal, T. Zou, R. García‐Muelas, P.O. Willi, KM. Engel, O.V. Safonova, D. Faust Akl, F. Krumeich, R.N. Grass, C. Mondelli, N. López, J. Pérez-RamírezAdv. Energy Mater. 2022, 12, 2103707. DOI: 10.1002/aenm.202103707. Dataset: 10.19061/iochem-bd-1-219 (ioChem-BD).
  255. 4

    Flame-made ternary Pd-In2O3-ZrO2 catalyst with enhanced oxygen vacancy generation for CO2 hydrogenation to methanol

    T. Pinheiro Araújo, C. Mondelli, M. Agrachev, T. Zou, P.O. Willi, KM. Engel, R.N. Grass, W.J. Stark, O.V. Safonova, G. Jeschke, S. Mitchell, J. Pérez-RamírezNat. Commun. 2022, 13, 5610. DOI: 10.1038/s41467-022-33391-w. Dataset: 10.5281/zenodo.6511235 (Zenodo).
  256. From ethene to propene (ETP) on tailored silica–alumina supports with isolated Ni(II) sites: uncovering the importance of surface nickel aluminate sites and the carbon-pool mechanism

    C. Zixuan, S.R. Docherty, P. Florian, A. Kierzkowska, I.B. Moroz, P.M. Abdala, C. Copéret, C.R. Müller, A. FedorovCatal. Sci. Technol. 2022, 12, 5861. DOI: 10.1039/D2CY01272C. Dataset: 10.1039/d2cy01272c (Zenodo).
  257. From non-edible biomass to performance thermoplastics with sustainable end-of-life

    L.P. Manker, J.S. LuterbacherChimia 2022, 76, 864. DOI: 10.2533/chimia.2022.864.
  258. 2

    Generalizing performance equations in heterogeneous catalysis from hybrid data and statistical learning

    S. Pablo-García, A. Sabadell-Rendón, A.J. Saadun, S. Morandi, J. Pérez-Ramírez, N. LópezACS Catal. 2022, 12, 1581. DOI: 10.1021/acscatal.1c04345. Datasets: 10.19061/iochem-bd-1-152 (ioChem-BD), 10.19061/iochem-bd-1-228 (ioChem-BD), 10.19061/iochem-bd-1-150 (ioChem-BD).
  259. Highly selective oxidative dehydrogenation of ethane to ethylene via chemical looping with oxygen uncoupling through structural engineering of the oxygen carrier

    G. Luongo, F. Donat, A.H. Bork, E. Willinger, A. Landuyt, C.R. MüllerAdv. Energy Mater. 2022, 12, 2200405. DOI: 10.1002/aenm.202200405. Dataset: 10.1002/aenm.202200405 (Zenodo).
  260. Importance of substrate pore size and wetting behavior in gas diffusion electrodes for CO2 reduction

    A. Senocrate, F. Bernasconi, D. Rentsch, K. Kraft, M. Trottmann, A. Wichser, D. Bleiner, C. BattagliaACS Appl. Energy Mater. 2022, 5, 14504. DOI: 10.1021/acsaem.2c03054. Dataset: 10.5281/zenodo.8228241 (Zenodo).
  261. Improving the lifetime of hybrid CoPc@MWCNT catalysts for selective electrochemical CO2-to-CO conversion

    C. Sun, Y.A. Hou, N. Lüdi, H. Hu, M.d.J. Gálvez‐Vázquez, M. Liechti, Y. Kong, M. Liu, R. Erni, A.V. Rudnev, P. BroekmannJ. Catal. 2022, 407, 198. DOI: 10.1016/j.jcat.2022.02.001. Dataset: 10.17632/9jvgfbcm2j.1 (Mendeley Data).
  262. Ketenes in the induction of the methanol-to-olefins process

    X. Wu, Z. Zhang, Z. Pan, X. Zhou, A. Bodi, P. HembergerAngew. Chem. 2022, 61, e202207777. DOI: 10.1002/anie.202207777. Dataset: 10.16907/4cb6c13f-9bd9-48be-8288-728b038f2b58 (PSI).
  263. 2

    Long-chain hydrocarbons by CO2 electroreduction using polarized nickel catalysts

    Y. Zhou, A.J. Martín, F. Dattila, S. Xi, N. López, J. Pérez-Ramírez, B.S. YeoNat. Catal. 2022, 5, 545. DOI: 10.1038/s41929-022-00803-5. Datasets: 10.19061/iochem-bd-1-200 (ioChem-BD), 10.5281/zenodo.6331376 (Zenodo).
  264. 4

    Machine intelligence for chemical reaction space

    P. Schwaller, A.C. Vaucher, R. Laplaza, C. Bunne, A. Krause, C. Corminboeuf, T. LainoWiley Interdiscip. Rev.: Comput. Mol. Sci. 2022, 12, e1604. DOI: 10.1002/wcms.1604.
  265. Machine learning-assisted discovery of hidden states in expanded free energy space

    R. Ketkaew, F. Creazzo, S. LuberJ. Phys. Chem. Lett. 2022, 13, 1797. DOI: 10.1021/acs.jpclett.1c04004. Dataset: 10.5281/zenodo.8143400 (Zenodo).
  266. Mapping active site geometry to activity in immobilized frustrated Lewis pair catalysts

    S. Das, R. Laplaza, J.T. Blaskovits, C. CorminboeufAngew. Chem. 2022, 61, e202202727. DOI: 10.1002/anie.202202727. Dataset: 10.5281/zenodo.6451293 (Zenodo).
  267. 2

    Mapping catalyst-solvent interplay in competing carboamination/cyclopropanation reactions

    M.D. Wodrich, M. Chang, S. Gallarati, Ł. Woźniak, N. Cramer, C. CorminboeufChem. - Eur. J. 2022, 28, e202200399. DOI: 10.1002/chem.202200399. Dataset: 10.5281/zenodo.8027571 (Zenodo).
  268. Mechanistic classification and benchmarking of polyolefin depolymerization over silica-alumina-based catalysts

    W. Lee, A. van Muyden, F. Bobbink, M.D. Mensi, J.R. Carullo, P.J. DysonNat. Commun. 2022, 13, 4850. DOI: 10.1038/s41467-022-32563-y. Dataset: 10.5281/zenodo.8273259 (Zenodo).
  269. 2

    Mechanistic routes toward C3 products in copper-catalysed CO2 electroreduction

    S.P. García Carrillo, F.L.P. Veenstra, L.R.L. Ting, R. García‐Muelas, F. Dattila, A.J. Martín, B.S. Yeo, J. Pérez-Ramírez, N. LópezCatal. Sci. Technol. 2022, 12, 409. DOI: 10.1039/D1CY01423D. Dataset: 10.19061/iochem-bd-1-175 (ioChem-BD).
  270. Metric learning for kernel ridge regression: assessment of molecular similarity

    R. Fabregat I De Aguilar-Amat, P. van Gerwen, M. Haeberle, F. Eisenbrand, C. CorminboeufMach. Learn.: Sci. Technol. 2022, 3, 035015. DOI: 10.1088/2632-2153/ac8e4f. Dataset: 10.5281/zenodo.8229209 (Zenodo).
  271. 2

    Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium

    J. Gu, S. Liu, W. Ni, W. Ren, S. Haussener, X. HuNat. Catal. 2022, 5, 268. DOI: 10.1038/s41929-022-00761-y. Dataset: 10.5281/zenodo.5751314 (Zenodo).
  272. Multi-scale representation learning on proteins

    V.R. Somnath, C. Bunne, A. KrauseNeurIPS 2022. DOI: 10.48550/arxiv.2204.02337.
  273. Na-β-Al2O3 stabilized Fe2O3 oxygen carriers for chemical looping water splitting: correlating structure with redox stability

    N.S. Yüzbasi, A. Armutlulu, T. Huthwelker, P.M. Abdala, C.R. MüllerJ. Mater. Chem. A 2022, 10, 10692. DOI: 10.1039/D1TA10507H. Dataset: 10.1039/D1TA10507H (Zenodo).
  274. Navigating within the safe operating space with carbon capture on-board

    V. Negri, M.A. Charalambous, J.D. Medrano‐García, G. Guillén‐GosálbezACS Sustainable Chem. Eng. 2022, 10, 17134. DOI: 10.1021/acssuschemeng.2c04627. Dataset: 10.5281/zenodo.8246816 (Zenodo).
  275. Nitrogenase loosens its belt to fix dinitrogen

    R.D. MiltonNat. Catal. 2022, 5, 361. DOI: 10.1038/s41929-022-00795-2.
  276. Novel Ni foam catalysts for sustainable nitrate to ammonia electroreduction

    A. Iarchuk, A. Dutta, P. BroekmannJ. Hazard. Mater. 2022, 439, 129504. DOI: 10.1016/j.jhazmat.2022.129504. Dataset: 10.5281/zenodo.6659731 (Zenodo).
  277. OSCAR: an extensive repository of chemically and functionally diverse organocatalysts

    S. Gallarati, P. van Gerwen, R. Laplaza, S. Vela, A. Fabrizio, C. CorminboeufChem. Sci. 2022, 13, 13782. DOI: 10.1039/D2SC04251G. Dataset: 10.24435/materialscloud:v4-sn (Materials Cloud).
  278. Oxidase-type C-H/C-H coupling using an isoquinoline-derived organic photocatalyst

    L. Zhang, B. Pfund, O.S. Wenger, X. HuAngew. Chem. 2022, 61, e202202649. DOI: 10.1002/anie.202202649. Dataset: 10.5281/zenodo.6325397 (Zenodo).
  279. Palladium-catalyzed trans-hydroalkoxylation: counterintuitive use of an aryl iodide additive to promote C–H bond formation

    A. Das, L. Buzzetti, M. Puriņš, J. WaserACS Catal. 2022, 12, 7565. DOI: 10.1021/acscatal.2c01809. Dataset: 10.5281/zenodo.6634788 (Zenodo).
  280. Pd(II)-catalyzed aminoacetoxylation of alkenes via tether formation

    T. Rossolini, A. Das, S. Nicolai, J. WaserOrg. Lett. 2022, 24, 5068. DOI: 10.1021/acs.orglett.2c01838. Dataset: 10.5281/zenodo.6786359 (Zenodo).
  281. Pd-catalyzed direct deoxygenative arylation of non-π-extended benzyl alcohols with boronic acids via transient formation of non-innocent isoureas

    G. Toupalas, G. Thomann, L. Schlemper, M.A. Rivero-Crespo, H.L. Schmitt, B. MorandiACS Catal. 2022, 12, 8147. DOI: 10.1021/acscatal.2c01858. Dataset: 10.1021/acscatal.2c01858 (Zenodo).
  282. Pd-catalyzed functionalization of alkenes and alkynes using removable tethers

    A. Das, J. WaserTetrahedron 2022, 128, 133135. DOI: 10.1016/j.tet.2022.133135.
  283. 3

    Performance descriptors of nanostructured metal catalysts for acetylene hydrochlorination

    S.K. Kaiser, E. Fako, I. Surin, F. Krumeich, V.A. Kondratenko, E.V. Kondratenko, A.H. Clark, N. López, J. Pérez-RamírezNat. Nanotechnol. 2022, 17, 606. DOI: 10.1038/s41565-022-01105-4. Datasets: 10.19061/iochem-bd-1-222 (ioChem-BD), 10.19061/iochem-bd-1-204 (ioChem-BD).
  284. Photo-electrochemical conversion of CO2 under concentrated sunlight enables combination of high reaction rate and efficiency

    E. Boutin, M. Patel, E. Kecsenovity, S. Suter, C. Janáky, S. HaussenerAdv. Energy Mater. 2022, 12, 2200585. DOI: 10.1002/aenm.202200585.
  285. Photoionization reveals catalytic mechanisms

    A. Bodi, P. Hemberger, J. Pérez-RamírezNat. Catal. 2022, 5, 850. DOI: 10.1038/s41929-022-00847-7.
  286. Physics-based representations for machine learning properties of chemical reactions

    P. van Gerwen, A. Fabrizio, M.D. Wodrich, C. CorminboeufMach. Learn.: Sci. Technol. 2022, 3, 045005. DOI: 10.1088/2632-2153/ac8f1a. Dataset: 10.5281/zenodo.7274529 (Zenodo).
  287. Planetary boundaries analysis of Fischer-Tropsch Diesel for decarbonizing heavy-duty transport

    M.A. Charalambous, J.D. Medrano‐García, G. Guillén‐GosálbezComput.-Aided Chem. Eng. 2022, 49, 1969. DOI: 10.1016/B978-0-323-85159-6.50328-6. Dataset: 10.5281/zenodo.8085800 (Zenodo).
  288. Porous organic polymers for CO2 capture, separation and conversion

    K.S. Song, P.W. Fritz, A. CoskunChem. Soc. Rev. 2022, 51, 9831. DOI: 10.1039/D2CS00727D.
  289. Post‐assembly modification of protein cages by Ubc9‐mediated lysine acylation

    M.D. Levasseur, R. Hofmann, T.G.W. Edwardson, S. Hehn, M. Thanaburakorn, J.W. Bode, D. HilvertChemBioChem 2022, 23, e202200332. DOI: 10.1002/cbic.202200332.
  290. Prospects of MgO-based sorbents for CO2 capture applications at high temperatures

    F. Donat, C.R. MüllerCurr. Opin. Green Sustainable Chem. 2022, 36, 100645. DOI: 10.1016/j.cogsc.2022.100645.
  291. 2

    Redispersion strategy for high-loading carbon-supported metal catalysts with controlled nuclearity

    V. Giulimondi, S.K. Kaiser, M. Agrachev, F. Krumeich, A.H. Clark, S. Mitchell, G. Jeschke, J. Pérez-RamírezJ. Mater. Chem. A 2022, 10, 5953. DOI: 10.1039/D1TA09238C. Dataset: 10.5281/zenodo.6325256 (Zenodo).
  292. Regionalized life cycle assessment of present and future lithium production for Li-ion batteries

    V. Schenker, C. Oberschelp, S. PfisterResour., Conserv. Recycl. 2022, 187, 106611. DOI: 10.1016/j.resconrec.2022.106611. Dataset: 10.5281/zenodo.8228815 (Zenodo).
  293. SELFIES and the future of molecular string representations

    M. Krenn, Q. Ai, S. Barthel, N. Carson, A. Frei, N.C. Frey, P. Friederich, T. Gaudin, A.A. Gayle, K.M. Jablonka, R.F. Lameiro, D. Lemm, A. Lo, S.M. Moosavi, J.M. Nápoles-Duarte, A. Nigam, R. Pollice, K. Rajan, U. Schatzschneider, P. Schwaller, M. Skreta, B. Smit, F. Strieth-Kalthoff, C. Sun, G. Tom, G. Falk von Rudorff, A. Wang, A.D. White, A. Young, R. Yu, A. Aspuru-GuzikPatterns 2022, 3, 100588. DOI: 10.1016/j.patter.2022.100588.
  294. Shaping copper nanocatalysts to steer selectivity in the electrochemical CO2 reduction reaction

    K. Rossi, R. BuonsantiAcc. Chem. Res. 2022, 55, 629. DOI: 10.1021/acs.accounts.1c00673.
  295. Site-specific protein ubiquitylation using an engineered, chimeric E1 activating enzyme and E2 SUMO conjugating enzyme Ubc9

    G. Akimoto, A.P. Fernandes, J.W. BodeACS Cent. Sci. 2022, 8, 275. DOI: 10.1021/acscentsci.1c01490. Dataset: 10.5281/zenodo.8074143 (Zenodo).
  296. Size-dependent structural alterations in Ag nanoparticles during CO2 electrolysis in a gas-fed zero-gap electrolyzer

    H. Hu, M. Liu, Y. Kong, I. Montiel, Y.A. Hou, A.V. Rudnev, P. BroekmannChemElectroChem 2022, 9, e202200615. DOI: 10.1002/celc.202200615. Dataset: 10.5281/zenodo.6840454 (Zenodo).
  297. Social life cycle assessment of green methanol and benchmarking against conventional fossil methanol

    D. Iribarren, R. Calvo-Serrano, M. Martín-Gamboa, Á. Galán-Martín, G. Guillén‐GosálbezSci. Total Environ. 2022, 824, 153840. DOI: 10.1016/j.scitotenv.2022.153840. Dataset: 10.5281/zenodo.8074911 (Zenodo).
  298. Solid-state NMR spectra of protons and quadrupolar nuclei at 28.2 T: resolving signatures of surface sites with fast magic angle spinning

    Z.J. Berkson, S. Björgvinsdóttir, A. Yakimov, D. Gioffrè, M.D. Korzyński, A.B. Barnes, C. CopéretJACS Au 2022, 2, 2460. DOI: 10.1021/jacsau.2c00510. Dataset: 10.5281/zenodo.8315184 (Zenodo).
  299. Supervised training of conditional Monge maps

    C. Bunne, A. Krause, M. CuturiFluid Phase Equilib. 2022. DOI: 10.48550/arXiv.2206.14262.
  300. 2

    Surface intermediates in In-based ZrO2-supported catalysts for hydrogenation of CO2 to methanol

    A. Tsoukalou, N.S. Bushkov, S.R. Docherty, D. Mance, A.I. Serykh, P.M. Abdala, C. Copéret, A. Fedorov, C.R. MüllerJ. Phys. Chem. C 2022, 126, 1793. DOI: 10.1021/acs.jpcc.1c08814. Dataset: 10.5281/zenodo.6350245 (Zenodo).
  301. Sustainable polyesters via direct functionalization of lignocellulosic sugars

    L.P. Manker, G.R. Dick, A. Demongeot, M.A. Hedou, C. Rayroud, T. Rambert, M.J. Jones, I. Sulaeva, M. Vieli, Y. Leterrier, A. Potthast, F. Maréchal, V. Michaud, H. Klok, J.S. LuterbacherNat. Chem. 2022, 14, 976. DOI: 10.1038/s41557-022-00974-5. Dataset: 10.5281/zenodo.6482769 (Zenodo).
  302. Taming the radical cation intermediate enabled one-step access to structurally diverse lignans

    J.C. Xiang, C. Fung, Q. Wang, J. ZhuNat. Commun. 2022, 13, 3481. DOI: 10.1038/s41467-022-31000-4. Dataset: 10.1038/s41467-022-31000-4 (Zenodo).
  303. 2

    The (not so) simple prediction of enantioselectivity – a pipeline for high-fidelity computations

    R. Laplaza, J. Sobez, M.D. Wodrich, M. Reiher, C. CorminboeufChem. Sci. 2022, 13, 6858. DOI: 10.1039/D2SC01714H. Dataset: 10.5281/zenodo.8026917 (Zenodo).
  304. The next frontier of environmental unknowns: substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs)

    A. Lai, A.M. Clark, B.I. Escher, M. Fernandez Morron, L.R. McEwen, Z. Tian, Z. Wang, E.L. SchymanskiEnviron. Sci. Technol. 2022, 56, 7448. DOI: 10.1021/acs.est.2c00321.
  305. The structural evolution of Mo2C and Mo2C/SiO2 under dry reforming of methane conditions: morphology and support effects

    A. Kurlov, D.C. Stoian, A. Baghizadeh, E. Kountoupi, E.B. Deeva, M.G. Willinger, P.M. Abdala, A. Fedorov, C.R. MüllerCatal. Sci. Technol. 2022, 12, 5620. DOI: 10.1039/D2CY00729K. Dataset: 10.5281/zenodo.8052890 (Zenodo).
  306. Visualisation and quantification of flooding phenomena in gas diffusion electrodes used for electrochemical reduction: a combined EDX/ICP-MS approach

    Y. Kong, H. Hu, M. Liu, Y.A. Hou, V. Kolivoška, S. Vesztergom, P. BroekmannJ. Catal. 2022, 408, 1. DOI: 10.1016/j.jcat.2022.02.014. Dataset: 10.5281/zenodo.6037503 (Zenodo).
  307. 2021

  308. Asymmetric cation-olefin monocyclization by engineered squalene-hopene cyclases

    M. Eichenberger, S. Hüppi, D. Patsch, N. Aeberli, R. Berweger, S. Dossenbach, E. Eichhorn, F. Flachsmann, L. Hortencio, F. Voirol, S. Vollenweider, U.T. Bornscheuer, R.M. BullerAngew. Chem. 2021, 60, 26080. DOI: 10.1002/anie.202108037.
  309. Atomically precise control in the design of low-nuclearity supported metal catalysts

    S. Mitchell, J. Pérez-RamírezNat. Rev. Mater. 2021, 6, 969. DOI: 10.1038/s41578-021-00360-6.
  310. CO2 capture at medium to high temperature using solid oxide-based sorbents: fundamental aspects, mechanistic insights, and recent advances

    M.T. Dunstan, F. Donat, A.H. Bork, C.P. Grey, C.R. MüllerChem. Rev. 2021, 121, 12681. DOI: 10.1021/acs.chemrev.1c00100.
  311. Carbon-supported bimetallic ruthenium-iridium catalysts for selective and stable hydrodebromination of dibromomethane

    A.J. Saadun, S. Mitchell, H. Bonchev, J. Pérez-RamírezChemCatChem 2021, 14, e202101494. DOI: 10.1002/cctc.202101494.
  312. Chelation-assisted C-C bond activation of biphenylene by gold(I) halides

    H. Beucher, J. Schörgenhumer, E. Merino, C. NevadoChem. Sci. 2021, 12, 15084. DOI: 10.1039/D1SC03814A.
  313. Cobalt(III)-catalyzed diastereo- and enantioselective three-component C–H functionalization

    A.G. Herraiz, N. CramerACS Catal. 2021, 11, 11938. DOI: 10.1021/acscatal.1c03153. Dataset: 10.1021/acscatal.1c03153 (Zenodo).
  314. Cobalt(III)-catalyzed enantioselective intermolecular carboamination by C-H functionalization

    K. Ozols, S. Onodera, Ł. Woźniak, N. CramerAngew. Chem. 2021, 60, 655. DOI: 10.1002/anie.202011140. Dataset: 10.1002/anie.202011140 (Zenodo).
  315. Continuous hydrogenolysis of acetal-stabilized lignin in flow

    W. Lan, Y.P. Du, S. Sun, J. Behaghel de Bueren, F. Héroguel, J.S. LuterbacherGreen Chem. 2021, 23, 320. DOI: 10.1039/D0GC02928A.
  316. Copper nanocrystal morphology determines the viability of molecular surface functionalization in tuning electrocatalytic behavior in CO2 reduction

    J.R. Pankhurst, P. Iyengar, V. Okatenko, R. BuonsantiInorg. Chem. 2021, 60, 6939. DOI: 10.1021/acs.inorgchem.1c00287.
  317. Cu(I)-catalyzed gem-aminoalkynylation of diazo compounds: synthesis of fluorinated propargylic amines

    N.P. Ramirez, G. Pisella, J. WaserJ. Org. Chem. 2021, 86, 10928. DOI: 10.1021/acs.joc.1c01423. Dataset: 10.5281/zenodo.5042202 (Zenodo).
  318. Deciphering metal–oxide and metal–metal interplay via surface organometallic chemistry: a case study with CO2 hydrogenation to methanol

    S.R. Docherty, C. CopéretJ. Am. Chem. Soc. 2021, 143, 6767. DOI: 10.1021/jacs.1c02555.
  319. Diaryl ether formation merging photoredox and nickel catalysis

    L. Liu, C. NevadoOrganometallics 2021, 40, 2188. DOI: 10.1021/acs.organomet.1c00018.
  320. Diformylxylose as a new polar aprotic solvent produced from renewable biomass

    A.O. Komarova, G.R. Dick, J.S. LuterbacherGreen Chem. 2021, 23, 4790. DOI: 10.1039/D1GC00641J. Dataset: 10.5281/zenodo.8119767 (Zenodo).
  321. Direct photoexcitation of ethynylbenziodoxolones: an alternative to photocatalysis for alkynylation reactions

    S.G.E. Amos, D. Cavalli, F. Le Vaillant, J. WaserAngew. Chem. 2021, 60, 23827. DOI: 10.1002/anie.202110257. Dataset: 10.5281/zenodo.5205584 (Zenodo).
  322. Diversified sampling for batched Bayesian optimization with determinantal point processes

    E. Nava, M. Mutný, A. KrauseFluid Phase Equilib. 2021, 151, 7031. DOI: 10.48550/arXiv.2110.11665.
  323. Dual valorization of lignin as a versatile and renewable matrix for enzyme immobilization and (flow) bioprocess engineering

    A.I. Benítez‐Mateos, S. Bertella, J. Behaghel de Bueren, J.S. Luterbacher, F. ParadisiChemSusChem 2021, 14, 3198. DOI: 10.1002/cssc.202100926.
  324. Efficient pure exploration for combinatorial bandits with semi-bandit feedback

    M. Jourdan, M. Mutný, J. Kirschner, A. KrauseFluid Phase Equilib. 2021. DOI: 10.48550/arXiv.2101.08534.
  325. Elucidating the facet-dependent selectivity for CO2 electroreduction to ethanol of Cu–Ag tandem catalysts

    P. Iyengar, M.J. Kolb, J.R. Pankhurst, F. Calle-Vallejo, R. BuonsantiACS Catal. 2021, 11, 4456. DOI: 10.1021/acscatal.1c00420.
  326. 2

    Elucidating the structure-dependent selectivity of CuZn towards methane and ethanol in CO2 electroreduction using tailored Cu/ZnO precatalysts

    S.B. Varandili, D.C. Stoian, J. Vavra, K. Rossi, J.R. Pankhurst, Y.T. Guntern, N. López, R. BuonsantiChem. Sci. 2021, 12, 14484. DOI: 10.1039/D1SC04271H. Datasets: 10.24435/materialscloud:3r-gn (Materials Cloud), 10.24435/materialscloud:3r-gn (Materials Cloud).
  327. Ethane-based catalytic process for vinyl chloride manufacture

    G. Zichittella, J. Pérez-RamírezAngew. Chem. 2021, 133, 24291. DOI: 10.1002/ange.202105851.
  328. Expansive quantum mechanical exploration of chemical reaction paths

    A. Baiardi, S. Grimmel, M. Steiner, P.L. Türtscher, J.P. Unsleber, T. Weymuth, M. ReiherAcc. Chem. Res. 2021, 55, 35. DOI: 10.1021/acs.accounts.1c00472.
  329. Experimental data supported techno-economic assessment of the oxidative dehydrogenation of ethane through chemical looping with oxygen uncoupling

    G. Luongo, F. Donat, M. Krödel, C. Cormos, C.R. MüllerRenewable Sustainable Energy Rev. 2021, 149, 111403. DOI: 10.1016/j.rser.2021.111403. Dataset: 10.1016/j.rser.2021.111403 (Zenodo).
  330. Exploiting the lability of metal halide perovskites for doping semiconductor nanocomposites

    M. Calcabrini, A. Genç, Y. Liu, T. Kleinhanns, S. Lee, D.N. Dirin, Q.A. Akkerman, M.V. Kovalenko, J. Arbiol, M. IbáñezACS Energy Lett. 2021, 6, 581. DOI: 10.1021/acsenergylett.0c02448.
  331. Extraction of organic chemistry grammar from unsupervised learning of chemical reactions

    P. Schwaller, B. Hoover, J. Reymond, H. Strobelt, T. LainoSci. Adv. 2021, 7, eabe4166. DOI: 10.1126/sciadv.abe4166.
  332. First steps toward sustainable circular uses of chemicals: advancing the assessment and management paradigm

    Z. Wang, S. HellwegACS Sustainable Chem. Eng. 2021, 9, 6939. DOI: 10.1021/acssuschemeng.1c00243.
  333. Guidelines for performing lignin-first biorefining

    M.M. Abu-Omar, K. Barta, G.T. Beckham, J.S. Luterbacher, J. Ralph, R. Rinaldi, Y. Román-Leshkov, J.S.M. Samec, B.F. Sels, F. WangEnergy Environ. Sci. 2021, 14, 262. DOI: 10.1039/D0EE02870C.
  334. Hybrid 0D antimony halides as air‐stable luminophores for high‐spatial‐resolution remote thermography

    V. Morad, S. Yakunin, B. Benin, Y. Shynkarenko, M. J. Grotevent, I. Shorubalko, S.C. Boehme, M.V. KovalenkoAdv. Mater. 2021, 33, 2007355. DOI: 10.1002/adma.202007355.
  335. Hydrogen dissociation sites on indium-based ZrO2-supported catalysts for hydrogenation of CO2 to methanol

    A. Tsoukalou, A.I. Serykh, E. Willinger, A. Kierzkowska, P.M. Abdala, A. Fedorov, C.R. MüllerCatal. Today 2021, 387, 38. DOI: 10.1016/j.cattod.2021.04.010. Dataset: 10.5281/zenodo.8152643 (Zenodo).
  336. Inferring experimental procedures from text-based representations of chemical reactions

    A.C. Vaucher, P. Schwaller, J. Geluykens, V.H. Nair, A. Iuliano, T. LainoNat. Commun. 2021, 12, 2573. DOI: 10.1038/s41467-021-22951-1.
  337. Methoxycyclization of 1,5-enynes by coinage metal catalysts: is gold always superior?

    M.D. Wodrich, C. CorminboeufHelv. Chim. Acta 2021, 104, e2100134. DOI: 10.1002/hlca.202100134. Dataset: 10.5281/zenodo.8028644 (Zenodo).
  338. Modulating chemoselectivity in a Fe(II)/α-ketoglutarate-dependent dioxygenase for the oxidative modification of a nonproteinogenic amino acid

    F. Meyer, R. Frey, M. Ligibel, E. Sager, K. Schroer, R. Snajdrova, R.M. BullerACS Catal. 2021, 11, 6261. DOI: 10.1021/acscatal.1c00678.
  339. Monodisperse long-chain sulfobetaine-capped CsPbBr3 nanocrystals and their superfluorescent assemblies

    F. Krieg, P.C. Sercel, M. Burian, H. Andrusiv, M.I. Bodnarchuk, T. Stöferle, R.F. Mahrt, D. Naumenko, H. Amenitsch, G. Rainò, M.V. KovalenkoACS Cent. Sci. 2021, 7, 135. DOI: 10.1021/acscentsci.0c01153.
  340. Operando laser scattering: probing the evolution of cocal pH changes on complex electrode architectures

    V. Grozovski, P. Moreno-García, E. Karst, M.d.J. Gálvez‐Vázquez, A. Fluegel, S. Kitayaporn, S. Vesztergom, P. BroekmannJ. Electrochem. Soc. 2021, 168, 072504. DOI: 10.1149/1945-7111/ac1212. Dataset: 10.5281/zenodo.8147183 (Zenodo).
  341. Perovskite quantum dots for super-resolution optical microscopy: where strong photoluminescence blinking matters

    L.G. Feld, Y. Shynkarenko, F. Krieg, G. Rainò, M.V. KovalenkoAdv. Opt. Mater. 2021, 9, 2100620. DOI: 10.1002/adom.202100620. Dataset: 10.5281/zenodo.4772469 (Zenodo).
  342. Photocatalytic decarboxylative coupling of aliphatic N-hydroxyphthalimide esters with polyfluoroaryl nucleophiles

    X. Yi, R. Mao, L. Lavrencic, X. HuAngew. Chem. 2021, 60, 23557. DOI: 10.1002/anie.202108465.
  343. 2

    Planetary boundaries analysis of low-carbon ammonia production routes

    S.C. D'Angelo, S. Cobo, V. Tulus, A. Nabera, A.J. Martín, J. Pérez-Ramírez, G. Guillén‐GosálbezACS Sustainable Chem. Eng. 2021, 9, 9740. DOI: 10.1021/acssuschemeng.1c01915. Dataset: 10.5281/zenodo.8074042 (Zenodo).
  344. 2

    Planetary metrics for the absolute environmental sustainability assessment of chemicals

    V. Tulus, J. Pérez-Ramírez, G. Guillén‐GosálbezGreen Chem. 2021, 23, 9881. DOI: 10.1039/D1GC02623B.
  345. 2

    Precursor nuclearity and ligand effects in atomically-dispersed heterogeneous iron catalysts for alkyne semi-hydrogenation

    D. Faust Akl, A. Ruiz-Ferrando, E. Fako, R. Hauert, O.V. Safonova, S. Mitchell, N. López, J. Pérez-RamírezChemCatChem 2021, 13, 3247. DOI: 10.1002/cctc.202100235. Datasets: 10.19061/iochem-bd-1-197 (ioChem-BD), 10.5281/zenodo.8029087 (Zenodo).
  346. Prediction of chemical reaction yields using deep learning

    P. Schwaller, A.C. Vaucher, T. Laino, J. ReymondMach. Learn.: Sci. Technol. 2021, 2, 015016. DOI: 10.1088/2632-2153/abc81d. Dataset: rxn_yields (GitHub).
  347. Preparation of recyclable and versatile porous poly(aryl thioether)s by reversible Pd-catalyzed C–S/C–S metathesis

    M.A. Rivero-Crespo, G. Toupalas, B. MorandiJ. Am. Chem. Soc. 2021, 143, 21331. DOI: 10.1021/jacs.1c09884. Dataset: 10.1021/jacs.1c09884 (Zenodo).
  348. Process design within planetary boundaries: application to CO2 based methanol production

    D. Vázquez Vázquez, G. Guillén‐GosálbezChem. Eng. Sci. 2021, 246, 116891. DOI: 10.1016/j.ces.2021.116891. Dataset: 10.5281/zenodo.8037077 (Zenodo).
  349. 2

    Process modelling and life cycle assessment coupled with experimental work to shape the future sustainable production of chemicals and fuels

    I. Ioannou, S.C. D'Angelo, Á. Galán-Martín, C. Pozo, J. Pérez-Ramírez, G. Guillén‐GosálbezReact. Chem. Eng. 2021, 6, 1179. DOI: 10.1039/D0RE00451K.
  350. Proximal optimal transport modeling of population dynamics

    C. Bunne, L. Meng-Papaxanthos, A. Krause, M. CuturiFluid Phase Equilib. 2021, 151, 6511. DOI: 10.48550/arXiv.2106.06345.
  351. Quantifying photoinduced polaronic distortions in inorganic lead halide perovskite nanocrystals

    O. Cannelli, N. Colonna, M. Puppin, T.C. Rossi, D. Kinschel, L.M.D. Leroy, J. Löffler, J.M. Budarz, A.M. March, G. Doumy, A. Al Haddad, M. Tu, Y. Kumagai, D. Walko, G. Smolentsev, F. Krieg, S.C. Boehme, M.V. Kovalenko, M. Chergui, G.F. ManciniJ. Am. Chem. Soc. 2021, 143, 9048. DOI: 10.1021/jacs.1c02403. Dataset: 10.5281/zenodo.4564629 (Zenodo).
  352. Rao-Blackwellizing the straight-through Gumbel-Softmax gradient estimator

    M.B. Paulus, CJ. Maddison, A. KrauseFluid Phase Equilib. 2021. DOI: 10.48550/arXiv.2010.04838.
  353. Re-programming and optimization of a L-proline cis-4-hydroxylase for the cis-3-halogenation of its native substrate

    A. Papadopoulou, J. Meierhofer, F. Meyer, T. Hayashi, S.L. Schneider, E. Sager, R.M. BullerChemCatChem 2021, 13, 3914. DOI: 10.1002/cctc.202100591.
  354. Reaction-based machine learning representations for predicting the enantioselectivity of organocatalysts

    S. Gallarati, R. Fabregat I De Aguilar-Amat, R. Laplaza, S. Bhattacharjee, M.D. Wodrich, C. CorminboeufChem. Sci. 2021, 12, 6879. DOI: 10.1039/D1SC00482D. Dataset: 10.5281/zenodo.5054507 (Zenodo).
  355. Reduction in minimum fluidization velocity and minimum bubbling velocity in gas-solid fluidized beds due to vibration

    C. McLaren, J. Metzger, C. Boyce, C.R. MüllerPowder Technol. 2021, 382, 566. DOI: 10.1016/j.powtec.2021.01.023.
  356. Sensing Cox processes via posterior sampling and positive bases

    M. Mutný, A. KrauseFluid Phase Equilib. 2021, 151, 6968. DOI: 10.48550/arXiv.2110.11181.
  357. Single-atom-substituted Mo2CTx:Fe-layered carbide for selective oxygen reduction to hydrogen peroxide: tracking the evolution of the MXene phase

    D.A. Kuznetsov, C. Zixuan, P.M. Abdala, O.V. Safonova, A. Fedorov, C.R. MüllerJ. Am. Chem. Soc. 2021, 143, 5771. DOI: 10.1021/jacs.1c00504.
  358. Status and prospects of the decentralised valorisation of natural gas into energy and energy carriers

    G. Zichittella, J. Pérez-RamírezChem. Soc. Rev. 2021, 50, 2984. DOI: 10.1039/D0CS01506G.
  359. 2

    Structural insight into an atomic layer deposition (ALD) grown Al2O3 layer on Ni/SiO2: impact on catalytic activity and stability in dry reforming of methane

    S.M. Kim, A. Armutlulu, W. Liao, D. Hosseini, D.C. Stoian, C. Zixuan, P.M. Abdala, C. Copéret, C.R. MüllerCatal. Sci. Technol. 2021, 11, 7563. DOI: 10.1039/D1CY01149A. Dataset: 10.1039/D1CY01149A (Zenodo).
  360. 2

    Structure sensitivity of nitrogen-doped carbon-supported metal catalysts in dihalomethane hydrodehalogenation

    A.J. Saadun, A. Ruiz-Ferrando, S. Büchele, D. Faust Akl, N. López, J. Pérez-RamírezJ. Catal. 2021, 404, 291. DOI: 10.1016/j.jcat.2021.10.008. Dataset: 10.19061/iochem-bd-1-210 (ioChem-BD).
  361. Suppression of the hydrogen evolution reaction is the key: selective electrosynthesis of formate from CO2 over porous In55Cu45 catalysts

    M. Rahaman, K. Kiran, I. Montiel, A. Dutta, P. BroekmannACS Appl. Mater. Interfaces 2021, 13, 35677. DOI: 10.1021/acsami.1c07829.
  362. 2

    Sustainability footprints of a renewable carbon transition for the petrochemical sector within planetary boundaries

    Á. Galán-Martín, V. Tulus, I. Díaz, C. Pozo, J. Pérez-Ramírez, G. Guillén‐GosálbezOne Earth 2021, 4, 565. DOI: 10.1016/j.oneear.2021.04.001. Dataset: 10.5281/zenodo.4652040 (Zenodo).
  363. The capping agent is the key: structural alterations of Ag NPs during CO2 electrolysis probed in a zero-gap gas-flow configuration

    M. Liu, Y. Kong, H. Hu, N. Kovács, C. Sun, I. Montiel, M.d.J. Gálvez‐Vázquez, Y.A. Hou, M. Mirolo, I. Martens, J. Drnec, S. Vesztergom, P. BroekmannJ. Catal. 2021, 404, 371. DOI: 10.1016/j.jcat.2021.10.016. Dataset: 10.5281/zenodo.6401829 (Zenodo).
  364. The role of hydrogen in heavy transport to operate within planetary boundaries

    A. Valente, V. Tulus, Á. Galán-Martín, M.A.J. Huijbregts, G. Guillén‐GosálbezSustainable Energy Fuels 2021, 5, 4637. DOI: 10.1039/D1SE00790D. Dataset: 10.5281/zenodo.8082748 (Zenodo).
  365. Tosyloxybenziodoxolone: a platform for performing the umpolung of alkynes in one-pot transformations

    J. Borrel, J. WaserOrg. Lett. 2021, 24, 142. DOI: 10.1021/acs.orglett.1c03771. Dataset: 10.5281/zenodo.5767223 (Zenodo).
  366. Unwrap them first: operando potential-induced activation is required when using PVP-capped Ag nanocubes as catalysts of CO₂ electroreduction

    M.d.J. Gálvez‐Vázquez, H. Xu, P. Moreno-García, Y.A. Hou, H. Hu, B. Wiley, S. Vesztergom, P. BroekmannChimia 2021, 75, 163. DOI: 10.2533/chimia.2021.163. Dataset: 10.5281/zenodo.8116584 (Zenodo).
  367. 2020

  368. 4

    Activation of copper species on carbon nitride for enhanced activity in the arylation of amines

    E. Vorobyeva, V. Bösken, S. Mitchell, A. Sabadell-Rendón, R. Hauert, S. Xi, A. Borgna, D. Klose, S.M. Collins, P.A. Midgley, D.M. Kepaptsoglou, Q.M. Ramasse, A. Ruiz-Ferrando, E. Fako, M.A. Ortuño, N. López, E.M. Carreira, J. Pérez-RamírezACS Catal. 2020, 10, 11069. DOI: 10.1021/acscatal.0c03164. Dataset: 10.19061/iochem-bd-1-151 (ioChem-BD).
  369. CO2-free conversion of CH4 to syngas using chemical looping

    F. Donat, C.R. MüllerAppl. Catal. 2020, 278, 119328. DOI: 10.1016/j.apcatb.2020.119328. Dataset: 10.1016/j.apcatb.2020.119328 (Zenodo).
  370. Combined partial oxidation of methane to synthesis gas and production of hydrogen or carbon monoxide in a fluidized bed using lattice oxygen

    F. Donat, Y. Xu, C.R. MüllerEnergy Technol. 2020, 8, 1900655. DOI: 10.1002/ente.201900655. Dataset: 10.1002/ente.201900655 (Zenodo).
  371. Completion of partial reaction equations

    A.C. Vaucher, P. Schwaller, T. LainoChemRxiv 2020. DOI: 10.26434/chemrxiv.13273310.v1. Dataset: rxn4chemistry/OpenNMT-py/tree/carbohydrate_transformer (GitHub).
  372. Data augmentation strategies to improve reaction yield predictions and estimate uncertainty

    P. Schwaller, A.C. Vaucher, T. Laino, J. ReymondChemRxiv 2020. DOI: 10.26434/chemrxiv.13286741.v1.
  373. Data-powered augmented volcano plots for homogeneous catalysis

    M.D. Wodrich, A. Fabrizio, B. Meyer, C. CorminboeufChem. Sci. 2020, 11, 12070. DOI: 10.1039/D0SC04289G. Dataset: 10.5281/zenodo.5061786 (Zenodo).
  374. Enantioselective carboetherification/hydrogenation for the synthesis of amino alcohols via a catalytically formed chiral auxiliary

    L. Buzzetti, M. Puriņš, P.D.G. Greenwood, J. WaserJ. Am. Chem. Soc. 2020, 142, 17334. DOI: 10.1021/jacs.0c09177. Dataset: 10.5281/zenodo.4046256 (Zenodo).
  375. 2

    Hybridization of fossil and CO2-based routes for ethylene production using renewable energy

    I. Ioannou, S.C. D'Angelo, A.J. Martín, J. Pérez-Ramírez, G. Guillén‐GosálbezChemSusChem 2020, 13, 6370. DOI: 10.1002/cssc.202001312. Dataset: 10.5281/zenodo.8082205 (Zenodo).
  376. Photocatalytic Umpolung of N- and O-substituted alkenes for the synthesis of 1,2-amino alcohols and diols

    S.G.E. Amos, S. Nicolai, J. WaserChem. Sci. 2020, 11, 11274. DOI: 10.1039/D0SC03655B. Dataset: 10.5281/zenodo.4043189 (Zenodo).
  377. Radical-cation cascade to aryltetralin cyclic ether lignans under visible-light photoredox catalysis

    J.C. Xiang, Q. Wang, J. ZhuAngew. Chem. 2020, 59, 21195. DOI: 10.1002/anie.202007548.
  378. Single-atom catalysts across the periodic table

    S.K. Kaiser, Z. Chen, D. Faust Akl, S. Mitchell, J. Pérez-RamírezChem. Rev. 2020, 120, 11703. DOI: 10.1021/acs.chemrev.0c00576.
  379. Solid-state NMR and NQR spectroscopy of lead-halide perovskite materials

    L. Piveteau, V. Morad, M.V. KovalenkoJ. Am. Chem. Soc. 2020, 142, 19413. DOI: 10.1021/jacs.0c07338.
  380. Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates

    G. Pesciullesi, P. Schwaller, T. Laino, J. ReymondNat. Commun. 2020, 11, 4874. DOI: 10.1038/s41467-020-18671-7.